[en] It is recognized that a chronic low-grade inflammation and an activation of the immune system are involved in the pathogenesis of obesity-related insulin resistance and type 2 diabetes. Systemic inflammatory markers are risk factors for the development of type 2 diabetes and its macrovascular complications. Adipose tissue, liver, muscle and pancreas are themselves sites of inflammation in presence of obesity. An infiltration of macrophages and other immune cells is observed in these tissues associated with a cell population shift from an anti-inflammatory to a pro-inflammatory profile. These cells are crucial for the production of pro-inflammatory cytokines, which act in an autocrine and paracrine manner to interfere with insulin signaling in peripheral tissues or induce β-cell dysfunction and subsequent insulin deficiency. Particularly, the pro-inflammatory interleukin-1β is implicated in the pathogenesis of type 2 diabetes through the activation of the NLRP3 inflammasome. The objectives of this review are to expose recent data supporting the role of the immune system in the pathogenesis of insulin resistance and type 2 diabetes and to examine various mechanisms underlying this relationship. If type 2 diabetes is an inflammatory disease, anti-inflammarory therapies could have a place in prevention and treatment of type 2 diabetes.
Disciplines :
Endocrinologie, métabolisme & nutrition
Auteur, co-auteur :
ESSER, Nathalie ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120:1640-1645.
Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J Clin Invest 2006, 116:1793-1801.
Donath M.Y., Shoelson S.E. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011, 11:98-107.
Chawla A., Nguyen K.D., Goh Y.P. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 2011, 11:738-749.
Ouchi N., Parker J.L., Lugus J.J., Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011, 11:85-97.
Pickup J.C., Mattock M.B., Chusney G.D., Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997, 40:1286-1292.
Yudkin J.S., Stehouwer C.D., Emeis J.J., Coppack S.W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue. Arterioscler Thromb Vasc Biol 1999, 19:972-978.
Bastard J.P., Jardel C., Bruckert E., Blondy P., Capeau J., Laville M., et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000, 85:3338-3342.
Haffner S., Temprosa M., Crandall J., Fowler S., Goldberg R., Horton E., et al. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes 2005, 54:1566-1572.
Bruun J.M., Helge J.W., Richelsen B., Stallknecht B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab 2006, 290:E961-E967.
Belalcazar L.M., Haffner S.M., Lang W., Hoogeveen R.C., Rushing J., Schwenke D.C., et al. Lifestyle intervention and/or statins for the reduction of C-reactive protein in type 2 diabetes: from the look AHEAD study. Obesity 2013, 21:944-950.
Vozarova B., Weyer C., Lindsay R.S., Pratley R.E., Bogardus C., Tataranni P.A. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51:455-461.
Natali A., Toschi E., Baldeweg S., Ciociaro D., Favilla S., Sacca L., et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 2006, 55:1133-1140.
Phillips C.M., Perry I.J. Does inflammation determine metabolic health status in obese and nonobese adults. J Clin Endocrinol Metab 2013, 98:E1610-E1619.
Duncan B.B., Schmidt M.I., Pankow J.S., Ballantyne C.M., Couper D., Vigo A., et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003, 52:1799-1805.
Spranger J., Kroke A., Mohlig M., Hoffmann K., Bergmann M.M., Ristow M., et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003, 52:812-817.
Herder C., Baumert J., Thorand B., Koenig W., de Jager W., Meisinger C., et al. Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984-2002. Diabetologia 2006, 49:921-929.
Festa A., D'Agostino R., Tracy R.P., Haffner S.M., Insulin Resistance Atherosclerosis Study Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 2002, 51:1131-1137.
Wang X., Bao W., Liu J., Ouyang Y.Y., Wang D., Rong S., et al. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2013, 36:166-175.
Blake G.J., Ridker P.M. Inflammatory bio-markers and cardiovascular risk prediction. J Intern Med 2002, 252:283-294.
Ridker P.M., Buring J.E., Cook N.R., Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14,719 initially healthy American women. Circulation 2003, 107:391-397.
Jager A., van Hinsbergh V.W., Kostense P.J., Emeis J.J., Yudkin J.S., Nijpels G., et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler Thromb Vasc Biol 1999, 19:3071-3078.
Saito I., Folsom A.R., Brancati F.L., Duncan B.B., Chambless L.E., McGovern P.G. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med 2000, 133:81-91.
Best L.G., Zhang Y., Lee E.T., Yeh J.L., Cowan L., Palmieri V., et al. C-reactive protein as a predictor of cardiovascular risk in a population with a high prevalence of diabetes: the Strong Heart Study. Circulation 2005, 112:1289-1295.
Soinio M., Marniemi J., Laakso M., Lehto S., Ronnemaa T. High-sensitivity C-reactive protein and coronary heart disease mortality in patients with type 2 diabetes: a 7-year follow-up study. Diabetes Care 2006, 29:329-333.
Kengne A.P., Batty G.D., Hamer M., Stamatakis E., Czernichow S. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four UK prospective cohort studies. Diabetes Care 2012, 35:396-403.
Lowe G., Woodward M., Hillis G., Rumley A., Li Q., Harrap S., et al. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE Study. Diabetes 2014, 63:1115-1123.
Hotamisligil G.S., Arner P., Caro J.F., Atkinson R.L., Spiegelman B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995, 95:2409-2415.
Cancello R., Henegar C., Viguerie N., Taleb S., Poitou C., Rouault C., et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005, 54:2277-2286.
Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003, 112:1796-1808.
O'Rourke R.W., White A.E., Metcalf M.D., Olivas A.S., Mitra P., Larison W.G., et al. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia 2011, 54:1480-1490.
Skurk T., Alberti-Huber C., Herder C., Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007, 92:1023-1033.
Esser N., L'Homme L., De Roover A., Kohnen L., Scheen A.J., Moutschen M., et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 2013, 56:2487-2497.
Fujisaka S., Usui I., Bukhari A., Ikutani M., Oya T., Kanatani Y., et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009, 58:2574-2582.
Wentworth J.M., Naselli G., Brown W.A., Doyle L., Phipson B., Smyth G.K., et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 2010, 59:1648-1656.
Feuerer M., Herrero L., Cipolletta D., Naaz A., Wong J., Nayer A., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009, 15:930-939.
Nishimura S., Manabe I., Nagasaki M., Eto K., Yamashita H., Ohsugi M., et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009, 15:914-920.
Winer S., Chan Y., Paltser G., Truong D., Tsui H., Bahrami J., et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 2009, 15:921-929.
Deiuliis J., Shah Z., Shah N., Needleman B., Mikami D., Narula V., et al. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS ONE 2011, 6:e16376.
Jagannathan-Bogdan M., McDonnell M.E., Shin H., Rehman Q., Hasturk H., Apovian C.M., et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol 2011, 186:1162-1172.
Koster A., Stenholm S., Alley D.E., Kim L.J., Simonsick E.M., Kanaya A.M., et al. Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity 2010, 18:2354-2361.
Tchernof A., Despres J.P. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013, 93:359-404.
Serfaty L., Lemoine M. Definition and natural history of metabolic steatosis: clinical aspects of NAFLD, NASH and cirrhosis. Diabetes Metab 2008, 34:634-637.
Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J., et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005, 11:183-190.
Huang W., Metlakunta A., Dedousis N., Zhang P., Sipula I., Dube J.J., et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 2010, 59:347-357.
Nguyen M.T., Favelyukis S., Nguyen A.K., Reichart D., Scott P.A., Jenn A., et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 2007, 282:35279-35292.
Fink L.N., Oberbach A., Costford S.R., Chan K.L., Sams A., Bluher M., et al. Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. Diabetologia 2013, 56:1623-1628.
Maedler K., Sergeev P., Ris F., Oberholzer J., Joller-Jemelka H.I., Spinas G.A., et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002, 110:851-860.
Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009, 27:519-550.
Schroder K., Zhou R., Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger. Science 2010, 327:296-300.
Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010, 11:136-140.
Boni-Schnetzler M., Boller S., Debray S., Bouzakri K., Meier D.T., Prazak R., et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 2009, 150:5218-5229.
Masters S.L., Dunne A., Subramanian S.L., Hull R.L., Tannahill G.M., Sharp F.A., et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 2010, 11:897-904.
Stienstra R., van Diepen J.A., Tack C.J., Zaki M.H., van de Veerdonk F.L., Perera D., et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci USA 2011, 108:15324-15329.
Vandanmagsar B., Youm Y.H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011, 17:179-188.
Koenen T.B., Stienstra R., van Tits L.J., Joosten L.A., van Velzen J.F., Hijmans A., et al. The inflammasome and caspase-1 activation: a new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology 2011, 152:3769-3778.
Wen H., Gris D., Lei Y., Jha S., Zhang L., Huang M.T., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011, 12:408-415.
L'Homme L., Esser N., Riva L., Scheen A., Paquot N., Piette J., et al. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 2013, 54:2998-3008.
Wildman R.P., Muntner P., Reynolds K., McGinn A.P., Rajpathak S., Wylie-Rosett J., et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med 2008, 168:1617-1624.
Stefan N., Kantartzis K., Machann J., Schick F., Thamer C., Rittig K., et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 2008, 168:1609-1616.
Summers L.K., Fielding B.A., Bradshaw H.A., Ilic V., Beysen C., Clark M.L., et al. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 2002, 45:369-377.
Yan Y., Jiang W., Spinetti T., Tardivel A., Castillo R., Bourquin C., et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 2013, 38:1154-1163.
Perreault M., Zulyniak M.A., Badoud F., Stephenson S., Badawi A., Buchholz A., et al. A distinct fatty acid profile underlies the reduced inflammatory state of metabolically healthy obese individuals. PLoS ONE 2014, 9:e88539.
Cnop M., Foufelle F., Velloso L.A. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2012, 18:59-68.
Esser N., Paquot N., Scheen A. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Invest Drugs 2014, [in press].
Larsen C.M., Faulenbach M., Vaag A., Volund A., Ehses J.A., Seifert B., et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007, 356:1517-1526.
Ridker P.M., Howard C.P., Walter V., Everett B., Libby P., Hensen J., et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 2012, 126:2739-2748.
Cavelti-Weder C., Babians-Brunner A., Keller C., Stahel M.A., Kurz-Levin M., Zayed H., et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 2012, 35:1654-1662.
Sloan-Lancaster J., Abu-Raddad E., Polzer J., Miller J.W., Scherer J.C., De Gaetano A., et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes. Diabetes Care 2013, 36:2239-2246.
Larsen C.M., Faulenbach M., Vaag A., Ehses J.A., Donath M.Y., Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 2009, 32:1663-1668.
Yuan M., Konstantopoulos N., Lee J., Hansen L., Li Z.W., Karin M., et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001, 293:1673-1677.
Hundal R.S., Petersen K.F., Mayerson A.B., Randhawa P.S., Inzucchi S., Shoelson S.E., et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002, 109:1321-1326.
Koska J., Ortega E., Bunt J.C., Gasser A., Impson J., Hanson R.L., et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia 2009, 52:385-393.
Goldfine A.B., Fonseca V., Jablonski K.A., Pyle L., Staten M.A., Shoelson S.E., et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2010, 152:346-357.
Paquot N., Castillo M.J., Lefebvre P.J., Scheen A.J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 2000, 85:1316-1319.
Ofei F., Hurel S., Newkirk J., Sopwith M., Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996, 45:881-885.
Dominguez H., Storgaard H., Rask-Madsen C., Steffen Hermann T., Ihlemann N., Baunbjerg Nielsen D., et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res 2005, 42:517-525.
Kiortsis D.N., Mavridis A.K., Vasakos S., Nikas S.N., Drosos A.A. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis 2005, 64:765-766.