Article (Scientific journals)
Time variations of O2(a1Delta) nightglow spots on the Venus nightside and dynamics of the upper mesosphere
Soret, Lauriane; Gérard, Jean-Claude; Piccioni, Giuseppe et al.
2014In Icarus, 237, p. 306-314
Peer Reviewed verified by ORBi
 

Files


Full Text
soret icarus 2014.pdf
Publisher postprint (2.06 MB)
Download

0019-1035/ 2014 Elsevier Inc. All rights reserved.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Venus; Venus, atmosphere; Atmospheres, dynamics; Terrestrial planets
Abstract :
[en] The dynamical regime of the Venus upper atmosphere is mainly decomposed into three regions. The first one, located below 65 km of altitude is governed by the retrograde superrotational zonal (RSZ) circulation. The second region above 130 km is dominated by the subsolar to antisolar (SS–AS) circulation. The dynamics of the transition region in between are still not fully understood. However, the O2(a1D) nightglow emission at 1.27 lm, whose emitting layer is located at 96 km, can be used as a tracer of the dynamics in this transition region and the imaging spectrometer VIRTIS-M on board Venus Express, orbiting Venus since April 2006, acquired a large amount of nadir observations at this wavelength. Several previous studies showed that the O2(a1D) nightglow emission is statistically located near the antisolar point. In this study, individual VIRTIS-M nadir observations have been analyzed to investigate the variability of the phenomenon. Bright patches of 1.27 lm airglow have been extracted from every observation. It appears that the location of the bright patch is highly variable, even though the brightest patches occur near the antisolar point. Nadir observations have also been divided into time series, allowing generating animations to follow the intensity and the displacement of bright patches over time. Apparent wind velocities and characteristic decay/rise times and have been deduced from these time series. The speed of the displacements varies from 0 up to 213 m s 1, with a mean value of 54 m s 1. Owing to the high variability of the direction of the displacements both in the short and the long terms, no clear trend of a global motion at 96 km can be deduced from these observations. The mean decay time is 750 min while the mean rise time is 1550 min. The decay time can be explained as a combination of radiative decay and atomic oxygen transport.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Soret, Lauriane  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Piccioni, Giuseppe;  IAPS > INAF
Drossart, Pierre;  Observatoire de Paris > LESIA
Language :
English
Title :
Time variations of O2(a1Delta) nightglow spots on the Venus nightside and dynamics of the upper mesosphere
Publication date :
April 2014
Journal title :
Icarus
ISSN :
0019-1035
eISSN :
1090-2643
Publisher :
Elsevier, San Diego-CA, United States
Volume :
237
Pages :
306-314
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 22 May 2014

Statistics


Number of views
68 (11 by ULiège)
Number of downloads
60 (2 by ULiège)

Scopus citations®
 
19
Scopus citations®
without self-citations
12
OpenCitations
 
14
OpenAlex citations
 
20

Bibliography


Similar publications



Contact ORBi