Article (Scientific journals)
Flexible estimation in cure survival models using Bayesian P-splines
Bremhorst, Vincent; Lambert, Philippe
2016In Computational Statistics and Data Analysis, 93, p. 270–284
Peer Reviewed verified by ORBi
 

Files


Full Text
1312.2369v2.pdf
Author preprint (1.58 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Survival analysis; Cure fraction; Bayesian P-splines
Abstract :
[en] In the analysis of survival data, it is usually assumed that any unit will experience the event of interest if it is observed for a sufficiently long time. However, it can be explicitly assumed that an unknown proportion of the population under study will never experience the monitored event. The promotion time model, which has a biological motivation, is one of the survival models taking this feature into account. The promotion time model assumes that the failure time of each subject is generated by the minimum of N independent latent event times with a common distribution independent of N. An extension which allows the covariates to influence simultane- ously the probability of being cured and the latent distribution is presented. The latent distribution is estimated using a flexible Cox proportional hazard model where the logarithm of the baseline hazard function is specified using Bayesian P-splines. Introducing covariates in the latent distribution implies that the population hazard function might not have a proportional hazard structure. However, the use of P- splines provides a smooth estimation of the population hazard ratio over time. The identification issues of the model are discussed and a restricted use of the model when the follow up of the study is not sufficiently long is proposed. The accuracy of our methodology is evaluated through a simulation study and the model is illustrated on data from a Melanoma clinical trial.
Disciplines :
Mathematics
Author, co-author :
Bremhorst, Vincent
Lambert, Philippe  ;  Université de Liège - ULiège > Institut des sciences humaines et sociales > Méthodes quantitatives en sciences sociales
Language :
English
Title :
Flexible estimation in cure survival models using Bayesian P-splines
Publication date :
2016
Journal title :
Computational Statistics and Data Analysis
ISSN :
0167-9473
eISSN :
1872-7352
Publisher :
Elsevier Science, Amsterdam, Netherlands
Volume :
93
Pages :
270–284
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
FWB - Fédération Wallonie-Bruxelles
Available on ORBi :
since 15 May 2014

Statistics


Number of views
82 (9 by ULiège)
Number of downloads
10 (1 by ULiège)

Scopus citations®
 
30
Scopus citations®
without self-citations
23
OpenCitations
 
22
OpenAlex citations
 
29

Bibliography


Similar publications



Contact ORBi