Metabolic plasticity of wild-type and AOX-deficient Chlamydomonas reinhardtii cells related to the inorganic nitrogen source (nitrate or ammonium), as revealed by a 2D-DIGE comparative proteomic analysis
Comparative proteomics; Bioenergetics; Metabolism; Alternative oxidase
Abstract :
[en] In the model unicellular green alga Chlamydomonas reinhardtii, both nitrate and ammonium can be used as primary inorganic nitrogen sources. Interestingly, the expression of the mitochondrial alternative oxidase (AOX), an "energy-dissipating" ubiquinol-oxygen oxidoreductase of the mitochondrial electron transport chain, is under the control of the exogenous nitrogen source : it is activated in nitrate-grown cells and repressed in ammonium-grown cells at both transcriptional and translational levels. This regulation of AOX by nitrogen is Chlamydomonas-specific and currently its bioenergetic and metabolic significance is poorly understood. In order to get clues to this peculiar phenomenon, we characterized the global metabolic response of a wild-type strain (WT) and an AOX-deficient mutant (AOX-) obtained by RNA interference grown either on nitrate or ammonium. For this purpose, we used a highly accurate 2D electrophoresis-based comparative proteomic approach (2D-DIGE) to compare the cellular proteomes of nitrate and ammonium-grown WT and AOX- Chlamydomonas. The analysis was performed in the middle of the exponential growth phase in mixotrophic conditions. It revealed many proteomic modifications between WT and AOX- cells and a smaller number between nitrate and ammonium-grown cells. In nitrate-grown cells, we notably observed an important up-regulation of glutamine synthetase. Interestingly, in AOX- cells, we respectively detected a general down-regulation and a general up-regulation of mitochondrial and chloroplastic bioenergetic enzymes, and also an important up-regulation of glutathione-dependent oxidative stress defense systems together with a remarkable down-regulation of methionine synthase. Altogether these results and previous studies provide new features in understanding the metabolic adaptations occurring in response to the inorganic nitrogen source with emphasis on the role played by AOX.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Gerin, Stéphanie ; Université de Liège - ULiège > Labo de Bioénergétique
Mathy, Grégory; Université de Liège - ULiège > Labo de Bioénergétique
Franck, Fabrice ; Université de Liège - ULiège > Labo de Bioénergétique
Language :
English
Title :
Metabolic plasticity of wild-type and AOX-deficient Chlamydomonas reinhardtii cells related to the inorganic nitrogen source (nitrate or ammonium), as revealed by a 2D-DIGE comparative proteomic analysis
Publication date :
15 June 2012
Event name :
Young Algaeneers Symposium
Event organizer :
Bioprocess Engineering Group + VLAG Doctoral School of Wageningen University
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.