[en] Understanding heat and mass transfers in porous materials is crucial in many areas of scientific research. Mathematical models have constantly evolved, their differences lying mainly in the choice of the driving potentials used to describe moisture flows, as well as in the complexity of characterizing the physical phenomena involved. Models developed in the field of Building Physics (HAM models) are used to describe the behavior of envelope parts and assess their impact on user comfort and energy performance. The water balance equation can be described in many ways; it is a function of the boundary conditions considered and the fact they induce high or low water content in the porous materials used.
This paper gives an overview of various formulations for this equation that are found in the Building Physics literature. It focuses first on the physically based formulation of moisture balance, drawing on the Representative Elementary Volume (REV) concept, coupled with thermodynamic flow rates description. This is then reformulated in line with various main moisture state variables offering a wide variety of expressions that are compared with available models. This approach provides access to all secondary transport coefficients associated with the process of mathematical transformation. Particular emphasis is placed on the moisture storage function choice and its impact on the final mathematical formulations. [fr] La compréhension des transferts de chaleur et de masse dans les milieux poreux est cruciale dans de nombreuses disciplines scientifiques. Les modèles mathématiques ont constamment évolués par se différencier principalement par les potentiels moteurs utilisés pour décrire les flux d'eau, ainsi que par la complexité de la description des phénomènes physiques impliqués. En Physique du Bâtiment, les modèles hygrothermiques (modèles HAM) sont importants pour décrire le comportement des parois et ainsi déterminer leur impact sur le confort intérieur autant que la performance énergétique. L'équation de bilan hydrique peut y être décrite de multiple manières et est fonction du cas étudié et le fait qu'il induise des basses ou hautes teneurs en eau dans les matériaux de construction.
Cet article propose une synthèse des différentes formes que peut prendre cette équation dans la littérature scientifique. Nous proposons de partir de l'équation de bilan hydrique physiquement basée, héritée du concept de Volume Elémentaire représentatif et de la description thermodynamique des flux. Celle-ci est ensuite reformulée en utilisant différentes variables d'état principales, offrant une grande variété d'expressions finales qui sont comparées aux modèles disponibles. La démarche offre l'accès à l'ensemble des coefficients de transport secondaires liés au processus de transformation mathématique. Un accent particulier est également porté sur le choix de la fonction de stockage d'humidité et sur son impact sur les formulations finales obtenues.
Disciplines :
Materials science & engineering
Author, co-author :
Dubois, Samuel ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Agriculture de précision
Lebeau, Frédéric ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Agriculture de précision
Evrard, Arnaud ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Agriculture de précision
Language :
English
Title :
Non-isothermal moisture balance equation in porous media: a review of mathematical formulations in Building Physics
Alternative titles :
[fr] Equation d'équilibre d'humidité dans les matériaux poreux en conditions non-isothermiques: une synthèse des formulations mathématiques en Physique du Bâtiment
Publication date :
September 2014
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Volume :
18
Issue :
3
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Adan O. et al., 2004. Determination of liquid water transfer properties of porous building materials and development of numerical assessment methods: introduction to the EC HAMSTAD project. J. Therm. Envelope Build. Sci., 27(4), 253-260.
Bear J., 2013. Dynamics of fluids in porous media. Dover, UK: Dover Publications.
Brunauer S., Emmett P.H. & Teller E., 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60, 309-319.
Carmeliet J., Descamps F. & Houvenaghel G., 1999. A multiscale network model for simulating moisture transfer properties of porous media. Transp. Porous Media, 35(1), 67-88.
Carmeliet J. & Roels S., 2002. Determination of the moisture capacity of porous building materials. J. Build. Phys., 25(3), 209-237.
Choi J.-G., Do D.D. & Do H.D., 2001. Surface diffusion of adsorbed molecules in porous media: monolayer, multilayer, and capillary condensation regimes. Ind. Eng. Chem. Res., 40, 4005-4031
Defay R. & Prigogine I., 1966. Surface tension and adsorption. London: Longmans.
Delgado J.M., Barreira E., Ramos N.M. & Freitas V.P., 2013. Hygrothermal simulation tools. Hygrothermal numerical simulation tools applied to building physics. London: Springer.
Descamps F., 1997. Continuum and discrete modelling of isothermal water and air transport in porous media. PhD thesis: University of Leuven (Belgium).
Dos Santos G.H. & Mendes N., 2009. Combined heat, air and moisture (HAM) transfer model for porous building materials. J. Build. Phys., 32(3), 203-220.
Dubois S., Evrard A. & Lebeau F., 2013. Modeling the hygrothermal behavior of biobased construction materials. J. Build. Phys., http://jen.sagepub.com/content/early/2013/06/12/1744259113489810, (1st July 2013).
Dullien F.L., 1979. Porous media-fluid transport and pore structure. New York, USA: Academic Press.
Fang L., Clausen G. & Fanger P.O., 1998. Impact of temperature and humidity on the perception of indoor air quality. Indoor Air, 8(2), 80-90.
Funk M. & Wakili K.G., 2008. Driving potentials of heat and mass transport in porous building materials: a comparison between general linear, thermodynamic and micromechanical derivation schemes. Transp. Porous Media, 72(3), 273-294.
Galbraith G.H., 1992. Heat and mass transfer through porous building materials. PhD thesis: University of Strathclyde, Glasgow (United Kingdom).
Galbraith G.H., Li J. & McLean R.C., 2001. Evaluation of discretized transport properties for numerical modelling of heat and moisture transfer in building structures. J. Build. Phys., 24(3), 240-260.
Glaser H., 1959. Grafisches verfahren zur Untersuchung von Diffusionvorgänge. Kältetechnik, 10, 345-349.
Grunewald J., Häupl P. & Bomberg M., 2003. Towards an engineering model of material characteristics for input to ham transport simulations. Part 1: an approach. J. Buil. Phys., 26(4), 343-366.
Hall C., 1977. Water movement in porous building materials. I. Unsaturated flow theory and its applications. Build. Environ., 12(2), 117-125.
Häupl P., 1987. Feuchtetransport in Baustoffen und Bauwerksteilen. PhD thesis: Technische Universität Dresden (Germany).
Häupl P. & Fechner H., 2003. Hygric material properties of porous building materials. J. Therm. Envelope Build. Sci., 26(3), 259-284.
Hens H., 2012. Building Physics. Heat, air and moisture: fundamentals and engineering methods with examples and exercises. Berlin: Ernst & Sohn.
Janssen H., 2011. Thermal diffusion of water vapour in porous materials: fact or fiction. Int. J. Heat Mass Transfer, 54(7), 1548-1562.
Janssen H., Carmeliet J. & Hens H., 2002. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground. J. Build. Phys., 25(4), 275-298.
Janssen H., Blocken B. & Carmeliet J., 2007. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. Int. J. Heat Mass Transfer, 50(5), 1128-1140.
Krus M. & Holm A., 1999. Approximationsverfahren für die Bestimmung feuchtetechnischer Materialkennwerte, http://www.hoki.ibp.fraunhofer.de/ibp/publikationen/konferenzbeitraege/pub1_15.pdf, (7 May 2013).
Künzel H.M., 1995. Simultaneous heat and moisture transport in building components. PhD thesis: IRB-Verlag Stuttgart (Germany).
Künzel H.M. & Kiessl K., 1996. Calculation of heat and moisture transfer in exposed building components. Int. J. Heat Mass Transfer, 40(1), 159-167.
Li Q., Rao J. & Fazio P., 2009. Development of HAM tool for building envelope analysis. Build. Environ., 44(5), 1065-1073.
Luikov A., 1966. Heat and mass transfer in capillary-porous colloïdal bodies. In: Actes du colloque international sur les phénomènes de transport avec changement de phase dans les milieux poreux ou colloïdaux, 1966, Paris, France. Oxford, UK: Pergamon.
Milly P., 1988. Advances in modeling of water in the unsaturated zone. Transp. Porous Media, 3(5), 491-514.
Milly P. & Eagleson P.S., 1980. The coupled transport of water and heat in a vertical soil column under atmospheric excitation. Report. Cambridge, MA, USA: Department of Civil Engineering, Massachusetts Institute of Technology, USA.
Milly P. & Christopher D., 1982. Moisture and heat transport in hysteretic, inhomogeneous porous media: a matric head-based formulation and a numerical model. Water Resour. Res., 18(3), 489-498.
Mudarri D. & Fisk W.J., 2007. Public health and economic impact of dampness and mold. Indoor Air, 17(3), 226-235.
Nielsen D. & Biggar J., 1986. Water flow and solute transport processes in the unsaturated zone. Water Resour. Res., 22(9), 89-108.
Osanyintola O.F. & Simonson C.J., 2006. Moisture buffering capacity of hygroscopic building materials: experimental facilities and energy impact. Energy Build., 38(10), 1270-1282.
Oswin C., 1946. The kinetics of package life. III. The isotherm. J. Soc. Chem. Ind., 65(12), 419-421.
Padfield T., 1998. The role of absorbent building materials in moderating changes of relative humidity. Lyngby, Denmark: Department of Structural Engineering and Materials, Technical University of Denmark.
Pel L., 1995. Moisture transport in building materials. PhD thesis: Technische Universiteit Eindhoven (The Netherlands).
Pel L., Kopinga K. & Brocken H., 1996. Moisture transport in porous building materials. HERON, 41(2), 95-105.
Philip J. & De Vries D., 1957. Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union, 38, 222-232.
Poyet S. & Charles S., 2009. Temperature dependence of the sorption isotherms of cement-based materials: heat of sorption and Clausius–Clapeyron formula. Cem. Concr. Res., 39(11), 1060-1067.
Qin M., Belarbi R. & Ait-Mokhtar A., 2009. Coupled heat and moisture transfer in multi-layer building materials. Constr. Build. Mater., 23(2), 967-975.
Rode C., 1990. Combined heat and moisture transfer in building constructions. PhD thesis: Technical University of Denmark, Lyngby (Denmark).
Rode C. & Clorius C.O., 2004. Modeling of moisture transport in wood with hysteresis and temperature-dependent sorption characteristics. In: Performance of Exterior Envelopes of Whole Buildings IX: International Conference, 2004, Clearwater, Florida. Oak Ridge, TN, USA: Oak Ridge National Laboratory, 2004.
Roels S., Depraetere W., Carmeliet J. & Hens H., 1999. Simulating non-isothermal water vapour transfer: an experimental validation on multi-layered building components. J. Build. Phys., 23(1), 17-40.
Salonvaara M. et al., 2004. Moisture buffering effects on indoor air quality-experimental and simulation results. In: Performance of Exterior Envelopes of Whole Buildings IX: International Conference, 2004, Clearwater, Florida. Oak Ridge, TN, USA: Oak Ridge National Laboratory, 2004.
Sheffler G.A., 2008. Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage. PhD thesis: Dresden University of Technology (Germany).
Sherwood T., 1929. The drying of solids – I. Ind. Eng. Chem., 21(1), 12-16.
Simonson C.J., Salaonvaara M. & Ojanen T., 2004. Heat and mass transfer between indoor air and a permeable and hygroscopic building envelope: part II–verification and numerical studies. J. Therm. Envelope Build. Sci., 28(2), 161-185.
Tariku F., Kumaran K. & Fazio P., 2010. Transient model for coupled heat, air and moisture transfer through multilayered porous media. Int. J. Heat Mass Transfer, 53(15), 3035-3044.
Toftum J. & Fanger P., 1999. Air humidity requirements for human comfort. PhD thesis: Technical University of Denmark, Lyngby (Denmark).
Uhlhorn R.J.R., 1990. Ceramic membranes for gas separation: synthesis and transport properties. PhD thesis: Universiteit Twente, Enschede (The Netherlands).
Van Der Kooi J., 1971. Moisture transport in cellular concrete roofs. PhD thesis: Technische Hogeschool, Eindhoven (The Netherlands).
Van Genuchten M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44(5), 892-898.
Whitaker S., 1977. A theory of drying. Adv. Heat Transfer, 13, 119-203.