[en] This work considers the on-the-fly domain adaptation of supervised binary classifiers, learned off-line, in order to adapt them to a target context. The probability density functions associated to negative and positive classes are supposed to be mixtures of the source distributions. Moreover, the mixture weights and the priors are only available at runtime. We present a theoretical solution to this problem, and demonstrate the effectiveness of the proposed approach on a real computer vision application. Our theoretical solution is applicable to any classifier approximating Bayes' classifier.
Research Center/Unit :
Intelsig Telim
Disciplines :
Electrical & electronics engineering
Author, co-author :
Pierard, Sébastien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Marcos Alvarez, Alejandro ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Lejeune, Antoine ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Van Droogenbroeck, Marc ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
On-the-fly domain adaptation of binary classifiers
Publication date :
06 June 2014
Event name :
23rd Belgian-Dutch Conference on Machine Learning (BENELEARN)
Event place :
Brussels, Belgium
Event date :
06-06-2014
Audience :
International
Main work title :
23rd Belgian-Dutch Conference on Machine Learning (BENELEARN)