Article (Scientific journals)
A learning procedure for sampling semantically different valid expressions
St-Pierre, David Lupien; Maes, Francis; Ernst, Damien et al.
2014In International Journal of Artificial Intelligence, 12 (1), p. 18-35
Peer reviewed
 

Files


Full Text
P2-ALearn.pdf
Publisher postprint (191.65 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Symbolic Regression; Machine Learning; Optimization
Abstract :
[en] A large number of problems can be formalized as finding the best symbolic expression to maximize a given numerical objective. Most approaches to approximately solve such problems rely on random exploration of the search space. This paper focuses on how this random exploration should be performed to take into account expressions redundancy and invalid expressions. We propose a learning algorithm that, given the set of available constants, variables and operators and given the target finite number of trials, computes a probability distribution to maximize the expected number of semantically different, valid, generated expressions. We illustrate the use of our approach on both medium-scale and large-scale expression spaces, and empirically show that such optimized distributions significantly outperform the uniform distribution in terms of the diversity of generated expressions. We further test the method in combination with the recently proposed nested Monte-Carlo algorithm on a set of benchmark symbolic regression problems and demonstrate its interest in terms of reduction of the number of required calls to the objective function.
Disciplines :
Computer science
Author, co-author :
St-Pierre, David Lupien
Maes, Francis
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Louveaux, Quentin  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Système et modélisation : Optimisation discrète
Language :
English
Title :
A learning procedure for sampling semantically different valid expressions
Publication date :
March 2014
Journal title :
International Journal of Artificial Intelligence
ISSN :
0974-0635
Publisher :
CESER Publications, India
Volume :
12
Issue :
1
Pages :
18-35
Peer reviewed :
Peer reviewed
Available on ORBi :
since 25 April 2014

Statistics


Number of views
125 (8 by ULiège)
Number of downloads
122 (4 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1

Bibliography


Similar publications



Contact ORBi