Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A(4) hydrolase
Huston, A. L.; Haeggstrom, J. Z.; Feller, Georges
2008 • In Biochimica et Biophysica Acta, 1784 (11), p. 1865-72
[en] The relationships between structure, activity, stability and flexibility of a cold-adapted aminopeptidase produced by a psychrophilic marine bacterium have been investigated in comparison with a mesophilic structural and functional human homolog. Differential scanning calorimetry, fluorescence monitoring of thermal- and guanidine hydrochloride-induced unfolding and fluorescence quenching were used to show that the cold-adapted enzyme is characterized by a high activity at low temperatures, a low structural stability versus thermal and chemical denaturants and a greater structural permeability to a quenching agent relative to the mesophilic homolog. These findings support the hypothesis that cold-adapted enzymes maintain their activity at low temperatures as a result of increased global or local structural flexibility, which results in low stability. Analysis of the thermodynamic parameters of irreversible thermal unfolding suggests that entropy-driven factors are responsible for the fast unfolding rate of the cold-adapted aminopeptidase. A reduced number of proline residues, a lower degree of hydrophobic residue burial and a decreased surface accessibility of charged residues may be responsible for this effect. On the other hand, the reduction in enthalpy-driven interactions is the primary determinant of the weak conformational stability.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Huston, A. L.
Haeggstrom, J. Z.
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Language :
English
Title :
Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A(4) hydrolase
Panikov N.S., Flanagan P.W., Oechel W.C., Mastepanov M.A., and Christensen T.R. Microbial activity in soils frozen to below - 39 °C. Soil Biol. Biochem. 38 (2006) 784-794
Blochl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H.W., and Stetter K.O. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1 (1997) 14-21
Kashefi K., and Lovley D.R. Extending the upper temperature limit for life. Science 301 (2003) 934
Cavicchioli R., Thomas T., and Curmi P.M. Cold stress response in Archaea. Extremophiles 4 (2000) 321-331
Ouhammouch M. Transcriptional regulation in Archaea. Curr. Opin. Genet. Dev. 14 (2004) 133-138
Motohashi K., Watanabe Y., Yohda M., and Yoshida M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 7184-7189
Carpenter J.F., and Crowe J.H. The mechanism of cryoprotection of proteins by solutes. Cryobiology 25 (1988) 244-255
Russell N.J. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61 (1998) 1-21
Zavodszky P., Kardos J., Svingor, and Petsko G.A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 7406-74011
Fields P.A. Protein function at thermal extremes: balancing stability and flexibility. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129 (2001) 417-431
Rasmussen B.F., Stock A.M., Ringe D., and Petsko G.A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357 (1992) 423-424
Feller G. Molecular adaptations to cold in psychrophilic enzymes. Cell. Mol. Life Sci. 60 (2003) 648-662
Huston A.L. Biotechnological aspects of cold-adapted enzymes. In: Margesin R., Schinner F., Marx J.C., and Gerday C. (Eds). Psychrophiles: from Biodiversity to Biotechnology (2007), Springer Verlag, Heidelberg 347-363
Huston A.L., Methe B., and Deming J.W. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70 (2004) 3321-3328
Haeggstrom J.Z. Leukotriene A4 hydrolase/aminopeptidase, the gatekeeper of chemotactic leukotriene B4 biosynthesis. J. Biol. Chem. 279 (2004) 50639-50642
Thunnissen M.M., Nordlund P., and Haeggstrom J.Z. Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol. 8 (2001) 131-135
Huston A.L., Krieger-Brockett B.B., and Deming J.W. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2 (2000) 383-388
Samudrala R., and Levitt M. A comprehensive analysis of 40 blind protein structure predictions. BMC Struct. Biol. 2 (2002) 3-18
Blomster M., Wetterholm A., Mueller M.J., and Haeggstrom J.Z. Evidence for a catalytic role of tyrosine 383 in the peptidase reaction of leukotriene A4 hydrolase. Eur. J. Biochem. 231 (1995) 528-534
DelMar E.G., Largman C., Brodrick J.W., and Geokas M.C. A sensitive new substrate for chymotrypsin. Anal. Biochem. 99 (1979) 316-320
Rudberg P.C., Tholander F., Thunnissen M.M., and Haeggstrom J.Z. Leukotriene A4 hydrolase/aminopeptidase. Glutamate 271 is a catalytic residue with specific roles in two distinct enzyme mechanisms. J. Biol. Chem. 277 (2002) 1398-1404
Pace C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131 (1986) 266-280
Collins T., D'Amico S., Georlette D., Marx J.C., Huston A.L., and Feller G. A nondetergent sulfobetaine prevents protein aggregation in microcalorimetric studies. Anal. Biochem. 352 (2006) 299-301
Sanchez-Ruiz J.M., Lopez-Lacomba J.L., Cortijo M., and Mateo P.L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27 (1988) 1648-1652
Lonhienne T., Gerday C., and Feller G. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543 (2000) 1-10
Royer C.A., Mann C.J., and Matthews C.R. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci. 2 (1993) 1844-1852
Lakowicz J.R., and Maliwal B.P. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J. Biol. Chem. 258 (1983) 4794-4801
Kyte J., and Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 (1982) 105-132
Ishibashi M., Tsumoto K., Ejima D., Arakawa T., and Tokunaga M. Characterization of arginine as a solvent additive: a halophilic enzyme as a model protein. Protein Pept. Lett. 12 (2005) 649-653
Feller G., and Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1 (2003) 200-208
Haeggstrom J.Z. Structure, function, and regulation of leukotriene A4 hydrolase. Am. J. Respir. Crit. Care Med. 161 (2000) S25-S31
Tholander F., Kull F., Ohlson E., Shafqat J., Thunnissen M.M., and Haeggstrom J.Z. Leukotriene A4 hydrolase, insights into the molecular evolution by homology modeling and mutational analysis of enzyme from Saccharomyces cerevisiae. J. Biol. Chem. 280 (2005) 33477-33486
Fields P.A., and Somero G.N. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 11476-11481
Beadle B.M., and Shoichet B.K. Structural bases of stability-function tradeoffs in enzymes. J. Mol. Biol. 321 (2002) 285-296
Collins T., Meuwis M.A., Gerday C., and Feller G. Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J. Mol. Biol. 328 (2003) 419-428
D'Amico S., Marx J.C., Gerday C., and Feller G. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278 (2003) 7891-7896
Georlette D., Damien B., Blaise V., Depiereux E., Uversky V.N., Gerday C., and Feller G. Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J. Biol. Chem. 278 (2003) 37015-37023
Privalov P.L. Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem. 35 (1982) 1-104
Matthews B.W., Nicholson H., and Becktel W.J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc. Natl. Acad. Sci. U. S. A. 84 (1987) 6663-6667
Eggers D.K., and Valentine J.S. Molecular confinement influences protein structure and enhances thermal protein stability. Protein Sci. 10 (2001) 250-261
Zhou H.X. Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. Acc. Chem. Res. 37 (2004) 123-130
Rehaber V., and Jaenicke R. Stability and reconstitution of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. J. Biol. Chem. 267 (1992) 10999-11006
Fan Y.X., Ju M., Zhou J.M., and Tsou C.L. Activation of chicken liver dihydrofolate reductase in concentrated urea solutions. Biochim. Biophys. Acta 1252 (1995) 151-157
Burdette D.S., Tchernajencko V.V., and Zeikus J.G. Effect of thermal and chemical denaturants on Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase stability and activity. Enzyme Microb. Technol. 27 (2000) 11-18