Contribution à des encyclopédies, dictionnaires... (Parties d’ouvrages)
Thermoviscoplasticity at Finite Strains: A Thermoelastic Predictor-Viscoplastic Corrector Algorithm
Ponthot, Jean-Philippe; Papeleux, Luc
2014In Hetnarski, Richard B. (Ed.) Encyclopedia of Thermal Stresses
Peer reviewed
 

Documents


Texte intégral
ETS_6092-6105_Ponthot_Papeleux_2014.pdf
Postprint Éditeur (262.99 kB)
Demander un accès

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Thermo-viscoplasticity; coupled problems; constitutive modelling
Résumé :
[en] This contribution aims at describing the numerical background associated to an efficient time integration procedure for thermomechanical elastic-viscoplastic constitutive model in a large deformation context. First, from the continuum mechanics point of view, the constitutive model is established. Within the framework of viscoplasticity, we have tried to remain as general as possible and the presented model encompasses under the same unified format, both {\it Perzyna-Chaboche} model of viscoplasticity which is well suited for moderate strain rates, as well as {\it Johnson-Cook} model which is a reference for metals submitted to high strain rates. Both incorporate nonlinear isotropic and kinematic hardening models. The classical rate-independent elastic-plastic model can then be easily recovered by setting the viscous terms to zero. Second, as the resulting continuum model is a stiff first order ordinary differential system in time, an integration algorithm is presented. This algorithm generalizes the classical "radial return algorithm", well established for elasto-plasticity, to thermo-elastic-viscoplastic models. The differential equations are numerically integrated using a thermoelastic predictor-viscoplastic corrector algorithm. The resulting algorithm is once again quite general and contains as special cases isothermal viscoplastic cases as well as classical rate-independent plasticity. Thanks to that generality, only one unified algorithm can be used both for plastic (rate-independent) as well as viscoplastic (rate-dependent) material models. Besides, in the formulation, a special care has also been taken so that all material parameters, including thermal dilatation, can be temperature dependent. As a consequence, it is also possible to model a continuous transition from elevated temperatures (that require the use of a viscoplastic model) to room temperature where rate-independent models are sometimes better suited by using a temperature-dependent viscosity that goes to zero as the room temperature is approached.
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
Ponthot, Jean-Philippe  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Papeleux, Luc  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Langue du document :
Anglais
Titre :
Thermoviscoplasticity at Finite Strains: A Thermoelastic Predictor-Viscoplastic Corrector Algorithm
Date de publication/diffusion :
2014
Titre de l'ouvrage principal :
Encyclopedia of Thermal Stresses
Editeur scientifique :
Hetnarski, Richard B.
Maison d'édition :
Springer
Pagination :
6092-6105
Peer reviewed :
Peer reviewed
Disponible sur ORBi :
depuis le 24 avril 2014

Statistiques


Nombre de vues
217 (dont 20 ULiège)
Nombre de téléchargements
16 (dont 15 ULiège)

OpenCitations
 
45
citations OpenAlex
 
319

publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Bibliographie


Publications similaires



Sorry the service is unavailable at the moment. Please try again later.
Contacter ORBi