[en] The guidance of human sperm cells under con finement in quasi 2D microchambers is investigated using a purely physical method to control their distribution. Transport property measurements and simulations are performed with diluted sperm populations, for which eff ects of geometrical guidance and concentration are studied in detail. In particular, a trapping transition at convex angular wall features is identi ed and analyzed. We also show that highly efficient microratchets can be fabricated by using curved asymmetric obstacles to take advantage of the spermatozoa specifi c swimming strategy.
Disciplines :
Physics
Author, co-author :
Guidobaldi, Alejandro; Universidad Nacional de Cordoba
Jeyaram, Yogesh; Katholieke Universiteit Leuven - KUL
Berdakin, Ivan; Universidad Nacional de Cordoba, Argentina
Moshchalkov, Victor V.; Katholieke Universiteit Leuven - KUL
Condat, Carlos; Universidad Nacional de Cordoba, Argentina
Marconi, Veronica I.; Universidad Nacional de Cordoba, Argentina
Giojalas, Laura; Universidad Nacional de Cordoba, Argentina
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
Language :
English
Title :
Geometrical guidance and trapping transition of human sperm cells
Publication date :
28 March 2014
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Society, College Park, United States - Maryland
G. Miño, T. E. Mallouk, T. Darnige, M. Hoyos, J. Dauchet, J. Dunstan, R. Soto, Y. Wang, A. Rousselet, and E. Clement, Phys. Rev. Lett. 106, 048102 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.048102
P. Frymier, R. M. Ford, H. C. Berg, and P. Cummings, Proc. Natl. Acad. Sci. USA 92, 14861 (1995). PNASA6 0027-8424 10.1073/pnas.92.13.6195
J. Männik, R. Driessen, P. Galajda, J. E. Keymer, and C. Dekker, Proc. Natl. Acad. Sci. USA 106, 14861 (2009). PNASA6 0027-8424 10.1073/pnas.0907542106
L. Rothschild, Nature 198, 1221 (1963). NATUAS 0028-0836 10.1038/1981221a0
H. Winet, G. S. Bernstein, and J. Head, J. Reprod. Fertil. 70, 511 (1984). 1470-1626 10.1530/jrf.0.0700511
J. Cosson, P. Huitorel, and C. Gagnon, Cell Motil. Cytoskeleton 54, 56 (2003). CMCYEO 0886-1544 10.1002/cm.10085 (Pubitemid 36033838)
D. M. Woolley, Reproduction 126, 259 (2003). 1470-1626 10.1530/rep.0.1260259
G. Li and J. X. Tang, Phys. Rev. Lett. 103, 078101 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.078101
A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Phys. Rev. Lett. 101, 038102 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.038102
M.d. C. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, Biomed. Microdevices 10, 709 (2008). 1387-2176 10.1007/s10544-008-9182-7
K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011). PNASA6 0027-8424 10.1073/pnas.1019079108
D. J. Smith, E. A. Gaffney, H. Shum, H. Gadêlha, and J. Kirkman-Brown, Biophys. J. 100, 2318 (2011). BIOJAU 0006-3495 10.1016/j.bpj.2011.03.014
E. A. Gaffney, H. Gadêlha, D. J. Smith, J. R. Blake, and J. C. Kirkman-Brown, Annu. Rev. Fluid Mech. 43, 501 (2011). ARVFA3 0066-4189 10.1146/annurev-fluid-121108-145442
J. Elgeti, U. B. Kaupp, and G. Gompper, Biophys. J. 100, 2321 (2011). BIOJAU 0006-3495 10.1016/j.bpj.2011.03.016
J. Elgeti and G. Gompper, Europhys. Lett. 85, 38002 (2009). EULEEJ 0295-5075 10.1209/0295-5075/85/38002
J. Elgeti, U. B. Kaupp, and G. Gompper, Biophys. J. 99, 1018 (2010). BIOJAU 0006-3495 10.1016/j.bpj.2010.05.015
J. Elgeti and G. Gompper, Europhys. Lett. 101, 48003 (2013). EULEEJ 0295-5075 10.1209/0295-5075/101/48003
D. J. Smith, E. A. Gaffney, J. R. Blake, and J. Kirkman-Brown, J. Fluid Mech. 621, 289 (2009). JFLSA7 0022-1120 10.1017/S0022112008004953
J. Dunstan, G. Miño, E. Clement, and R. Soto, Phys. Fluids 24, 011901 (2012). PHFLE6 1070-6631 10.1063/1.3676245
P. Galajda, J. Keymer, P. Chaikin, and R. Austin, J. Bacteriol. 189, 8704 (2007). JOBAAY 0021-9193 10.1128/JB.01033-07 (Pubitemid 350210041)
V. Kantsler, J. Dunkel, M. Polin, and R. E. Goldstein, Proc. Natl. Acad. Sci. USA 110, 1187 (2013). PNASA6 0027-8424 10.1073/pnas.1210548110
Y. A. Chen, Z. W. Huang, F. S. Tsai, C. Y. Chen, C. M. Liu, and A. M. Wo, Microfluid. Nanofluid. 10, 59 (2011). 1613-4982 10.1007/s10404-010-0646-8
S. Tasoglu, H. Safaee, X. Zhang, J. L. Kingsley, P. N. Catalano, U. A. Gurkan, A. Nureddin, E. Kayaalp, R. M. Anchan, R. L. Maas, E. Tuzel, and U. Demirci, Small 9, 3374 (2013). 1613-6810 10.1002/smll.201300020
K. Matsuura, T. Uozumi, T. Furuichi, I. Sugimoto, M. Kodama, and H. Funahashi, Fertil. Steril. 99, 400 (2013). FESTAS 0015-0282 10.1016/j. fertnstert.2012.10.022
S. E. Hulme, W. R. DiLuzio, S. S. Shevkoplyas, L. Turner, M. Mayer, H. C. Berg, and G. M. Whitesides, Lab Chip 8, 1888 (2008). 1473-0197 10.1039/b809892a
L. Angelani, R. Di Leonardo, and G. Ruocco, Phys. Rev. Lett. 102, 048104 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.102.048104
S. Y. Kim, E. S. Lee, H. J. Lee, S. Y. Lee, S. K. Lee, and T. Kim, J. Micromech. Microeng. 20, 095006 (2010). JMMIEZ 0960-1317 10.1088/0960-1317/20/9/ 095006
E. Altshuler, G. Miño, C. Pérez-Penichet, L. del Río, A. Lindner, A. Rousselet, and E. Clément, Soft Matter 9, 1864 (2013). 1744-683X 10.1039/c2sm26460a
M. B. Wan, C. J. Olson Reichhardt, Z. Nussinov, and C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.101.018102
J. Tailleur and M. E. Cates, Eur. Phys. Lett. 86, 60002 (2009). EULEEJ 0295-5075 10.1209/0295-5075/86/60002
I. Berdakin, Y. Jeyaram, V. V. Moshchalkov, L. Venken, S. Dierckx, S. J. Vanderleyden, A. V. Silhanek, C. A. Condat, and V. I. Marconi, Phys. Rev. E 87, 052702 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.87.052702
I. Berdakin, A. V. Silhanek, H. N. Moyano Cortéz, V. I. Marconi, and C. A. Condat, Central Eur. J. Phys. 11, 1653 (2013). 10.2478/s11534-013- 0300-7
P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 110, 268301 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.268301
C. Reichhardt and C. J. Olson Reichhardt, Phys. Rev. E 88, 062310 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.88.062310
B. Q. Ai, Q. Y. Chen, Y. F. He, F. G. Li, and W. R. Zhong, Phys. Rev. E 88, 062129 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.88.062129
S. Martens, G. Schmid, A. V. Straube, L. Schimansky-Geier, and P. Hänggi, Eur. Phys. J.: Special Topics 222, 2453 (2013). 1951-6355 10.1140/epjst/e2013-02029-4
G. Suárez, M. Hoyuelos, and H. O. Mártin, Phys. Rev. E 88, 052136 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.88.052136
X. Zheng, B. tenHagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, and H. Lowen, Phys. Rev. E 88, 032304 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.88. 032304
M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143 (2013). RMPHAT 0034-6861 10.1103/RevModPhys.85.1143
P. Denissenko, V. Kantsler, D. J. Smith, and J. Kirkman-Brown, Proc. Natl. Acad. Sci. USA 109, 8007 (2012). PNASA6 0027-8424 10.1073/pnas.1202934109
See Supplemental Material at http://link.aps.org/supplemental/10.1103/ PhysRevE.89.032720 for sperm accumulation and motion along walls as well as corner accumulation (figure and movie) and for a sketch of the collisions.
R. J. Aitken and J. S. Clarkson, J. Androl. 9, 367 (1988).
T. Ishikawa, G. Sekiya, Y. Imai, and T. Yamaguchi, Biophys. J. 93, 2217 (2007). BIOJAU 0006-3495 10.1529/biophysj.107.110254 (Pubitemid 47437605)
In order to avoid the reinforced boundary effects at the corner of the chamber, the spatial distributions of sperm cells were done starting 250 (Equation presented)m away from the corner. The use of five different distributions calculated at random positions allows us to estimate the error bar of each point. It is important to note that a 1D reduced distribution along the (Equation presented) axis or (Equation presented) axis, give very similar spatial dependencies, showing the robustness of the results.
A. Kaiser, H. H. Wensink, and H. Löwen, Phys. Rev. Lett. 108, 268307 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.268307
J. Deseigne, S. Leonard, O. Dauchot, and H. Châte, Soft Matter 8, 5629 (2012). 1744-683X 10.1039/c2sm25186h
A. Kaiser, K. Popowa, H. H. Wensink, and H. Löwen, Phys. Rev. E. 88, 022311 (2013). PLEEE8 1539-3755 10.1103/PhysRevE.88.022311
B. S. Cho, T. G. Schuster, X. Zhu, D. Chang, G. D. Smith, and S. Takayama, Anal. Chem. 75, 1671 (2003). ANCHAM 0003-2700 10.1021/ac020579e (Pubitemid 36512607)
D. B. Seo, Y. Agca, Z. C. Feng, and J. K. Critser, Microfluid. Nanofluid. 3, 561 (2007). 1613-4982 10.1007/s10404-006-0142-3 (Pubitemid 47249362) Técnicas