Cambier, Ludivine ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Mycologie vétérinaire
Weatherspoon, Alodie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Defaweux, Valérie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie
Bagut, lena Tatiana
Heinen, Marie-Pierre ; Université de Liège - ULiège > Département de morphologie et pathologie > Anatomie des animaux domestiques
Antoine, Nadine ; Université de Liège - ULiège > Département de morphologie et pathologie > Histologie
Mignon, Bernard ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Mycologie vétérinaire
Language :
English
Title :
Assessment of the cutaneous immune response during Arthroderma benhamiae and Arthroderma vanbreuseghemii infection using an experimental mouse model
Almeida SR,. Immunology of dermatophytosis. Mycopathologia 2008; 166: 277-83.
Mignon B, Tabart J, Baldo A, et al,. Immunization and dermatophytes. Curr Opin Infect Dis 2008; 21: 134-40. (Pubitemid 351641515)
Huang W, Na L, Fidel PL, Schwarzenberger P,. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004; 190: 624-31. (Pubitemid 38982105)
Bozza S, Zelante T, Moretti S, et al,. Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection. J Immunol 2008; 180: 4022-31.
Conti HR, Shen F, Nayyar N, et al,. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009; 206: 299-311.
Zelante T, Luca AD, Bonifazi P, et al,. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 2007; 37: 2695-706. (Pubitemid 47578289)
Vermout S, Tabart J, Baldo A, et al,. Pathogenesis of dermatophytosis. Mycopathologia 2008; 166: 267-75.
Shiraki Y, Ishibashi Y, Hiruma M, et al,. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol 2006; 55: 1175-85. (Pubitemid 44373152)
Cambier L, Mathy A, Baldo A, et al,. Feline polymorphonuclear neutrophils produce pro-inflammatory cytokines following exposure to Microsporum canis. Vet Microbiol 2013; 162: 800-5.
Heddergott C, Bruns S, Nietzsche S, et al,. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells. Eukaryot Cell 2012; 11: 673-82.
Mignon BR, Leclipteux T, Focant C, et al,. Humoral and cellular immune response to a crude exo-antigen and purified keratinase of Microsporum canis in experimentally infected guinea pigs. Med Mycol 1999; 37: 123-9. (Pubitemid 29237621)
Brouta F, Descamps F, Vermout S, et al,. Humoral and cellular immune response to a Microsporum canis recombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Med Mycol 2003; 41: 495-501. (Pubitemid 38075562)
Saunte DM, Hasselby JP, Brillowska-Dabrowska A, et al,. Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnostics and antifungals. Med Mycol 2008; 46: 303-13. (Pubitemid 351552485)
Baldo A, Mathy A, Tabart J, et al,. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol 2010; 162: 990-7.
White TC, Oliver BG, Gräser Y, Henn MR,. Generating and testing molecular hypotheses in the dermatophytes. Eukaryot Cell 2008; 7: 1238-45.
Hay RJ, Calderon RA, Collins MJ,. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol 1983; 81: 270-4. (Pubitemid 13045268)
Hay RJ, Calderon RA, Mackenzie CD,. Experimental dermatophytosis in mice: correlation between light and electron microscopic changes in primary, secondary and chronic infections. Br J Exp Pathol 1988; 69: 703-16.
Calderon RA, Hay RJ,. Cell-mediated immunity in experimental murine dermatophytosis. I. Temporal aspects of T-suppressor activity caused by Trichophyton quinckeanum. Immunology 1984; 53: 457-64. (Pubitemid 14020551)
Calderon RA, Hay RJ,. Cell-mediated immunity in experimental murine dermatophytosis. II. Adoptive transfer of immunity to dermatophyte infection by lymphoid cells from donors with acute or chronic infections. Immunology 1984; 53: 465-72. (Pubitemid 14020552)
Beguin H, Pyck N, Hendrickx M, et al,. The taxonomic status of Trichophyton quinckeanum and T. interdigitale revisited: a multigene phylogenetic approach. Med Mycol 2012; 50: 871-82.
Nakamura T, Nishibu A, Yasoshima M, et al,. Analysis of Trichophyton antigen-induced contact hypersensitivity in mouse. J Dermatol Sci 2012; 66: 144-53.
Venturini J, Álvares AM, Camargo MRD, et al,. Dermatophyte-host relationship of a murine model of experimental invasive dermatophytosis. Microbes Infect 2012; 14: 1144-51.
Drouot S, Mignon B, Fratti M, et al,. Pets as the main source of two zoonotic species of the Trichophyton mentagrophytes complex in Switzerland, Arthroderma vanbreuseghemii and Arthroderma benhamiae. Vet Dermatol 2009; 20: 13-18.
Symoens F, Jousson O, Planard C, et al,. Molecular analysis and mating behaviour of the Trichophyton mentagrophytes species complex. Int J Med Microbiol 2011; 301: 260-6.
Symoens F, Jousson O, Packeu A, et al,. The dermatophyte species Arthroderma benhamiae: intraspecies variability and mating behaviour. J Med Microbiol 2013; 62: 377-85.
Staib P, Zaugg C, Mignon B, et al,. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology 2010; 156: 884-95.
Grumbt M, Defaweux V, Mignon B, et al,. Targeted gene deletion and in vivo analysis of putative virulence gene function in the pathogenic dermatophyte Arthroderma benhamiae. Eukaryot Cell 2011; 10: 842-53.
Alshahni MM, Yamada T, Takatori K, et al,. Insights into a nonhomologous integration pathway in the dermatophyte Trichophyton mentagrophytes: efficient targeted gene disruption by use of mutants lacking ligase IV. Microbiol Immunol 2011; 55: 34-43.
Hawksworth DL, Crous PW, Redhead SA, et al,. The Amsterdam declaration on fungal nomenclature. IMA Fungus 2011; 2: 105-12.
Fumeaux J, Mock M, Ninet B, et al,. First report of Arthroderma benhamiae in Switzerland. Dermatology 2004; 208: 244-50. (Pubitemid 38594543)
Shire D,. An invitation to an open exchange of reagents and information useful for the measurements of cytokine mRNA levels by PCR. Eur Cytokine Netw 1993; 4: 161-2.
Godinez I, Haneda T, Raffatellu M, et al,. T cells help to amplify inflammatory responses induced by Salmonella enterica serotype typhimurium in the intestinal mucosa. Infect Immun 2008; 76: 2008-17. (Pubitemid 351656133)
Dewals B, Hoving JC, Horsnell WGC, et al,. Control of Schistosoma mansoni egg-induced inflammation by IL-4-responsive CD4+CD25-CD103+Foxp3- cells is IL-10-dependent. Eur J Immunol 2010; 40: 2837-47.
Vermout SM, Brouta FD, Descamps FF, et al,. Evaluation of immunogenicity and protective efficacy of a Microsporum canis metalloprotease subunit vaccine in guinea pigs. FEMS Immunol Med Microbiol 2004; 40: 75-80. (Pubitemid 38083361)
Ackermann AB,. Dermatophytosis. In: Histology Diagnosis of Inflammatory Skin Diseases (, Ackerman AB, Chongchitnant N, Sanchez J, Guo J, Bennin B, Reichel M, Randall MB, eds). Baltimore: Williams & Wilkins, 1997; 910.
Calderon RA, Hay RJ,. Fungicidal activity of human neutrophils and monocytes on dermatophyte fungi, Trichophyton quinckeanum and Trichophyton rubrum. Immunology 1987; 61: 289-95. (Pubitemid 17084123)
Calderon RA, Shennan GI,. Susceptibility of Trichophyton quinckeanum and Trichophyton rubrum to products of oxidative metabolism. Immunology 1987; 61: 283-8. (Pubitemid 17084122)
Chung JS, Yudate T, Tomihari M, et al,. Binding of DC-HIL to dermatophytic fungi induces tyrosine phosphorylation and potentiates antigen presenting cell function. J Immunol 2009; 183: 5190-8.
Sato K, Yang XL, Yudate T, et al,. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 2006; 281: 38854-66. (Pubitemid 46042012)
Joffre O, Nolte MA, Sporri R, Sousa CRE,. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 2009; 227: 234-47.
Bryant P, Ploegh H,. Class II MHC peptide loading by the professionals. Curr Opin Immunol 2004; 16: 96-102. (Pubitemid 38198123)
Esche C, Stellato C, Beck LA,. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 2005; 125: 615-28.
Bettelli E, Carrier YJ, Gao WD, et al,. Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature 2006; 441: 235-8.
Wilson NJ, Boniface K, Chan JR, et al,. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8: 950-7. (Pubitemid 47300009)
Volpe E, Servant N, Zollinger R, et al,. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 2008; 9: 650-7. (Pubitemid 351712635)
Stockinger B, Veldhoen M,. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007; 19: 281-6. (Pubitemid 46687011)
Wolk K, Kunz S, Witte E, et al,. IL-22 increases the innate immunity of tissues. Immunity 2004; 21: 241-54. (Pubitemid 39094053)
Sabat R, Grütz G, Warszawska K, et al,. Biology of interleukin-10. Cytokine Growth Factor Rev 2010; 21: 331-44.
Pelletier M, Maggi L, Micheletti A, et al,. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010; 115: 335-43.
Roussel L, Houle F, Chan C, et al,. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol 2010; 184: 4531-7.
Griffin GK, Newton G, Tarrio ML, et al,. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol 2012; 188: 6287-99.
Hsu SC, Wang LT, Yao CL, et al,. Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology 2013; 218: 90-5.