[en] The prediction of surface drift of floating objects is an important task, with applications such as marine transport, pollutant dispersion, and search-and-rescue activities. But forecasting even the drift of surface waters is very challenging, because it depends on complex interactions of currents driven by the wind, the wave field and the general prevailing circulation. Furthermore, although each of those can be forecasted by deterministic models, the latter all suffer from limitations, resulting in imperfect predictions.
In the present study, we try and predict the drift of two buoys launched during the DART06 (Dynamics of the Adriatic sea in Real-Time 2006) and MREA07 (Maritime Rapid Environmental Assessment 2007) sea trials, using the so-called hyper-ensemble technique: different models are combined in order to minimize departure from independent observations during a training period; the obtained combination is then used in forecasting mode. We review and try out different hyper-ensemble techniques, such as the simple ensemble mean, least-squares weighted linear combinations, and techniques based on data assimilation, which dynamically update the model’s weights in the combination when new observations become available. We show that the latter methods alleviate the need of fixing the training length a priori, as older information is automatically discarded.
When the forecast period is relatively short (12 h), the discussed methods lead to much smaller forecasting errors compared with individual models (at least three times smaller), with the dynamic methods leading to the best results. When many models are available, errors can be further reduced by removing colinearities between them by performing a principal component analysis. At the same time, this reduces the amount of weights to be determined.
In complex environments when meso- and smaller scale eddy activity is strong, such as the Ligurian Sea, the skill of individual models may vary over time periods smaller than the forecasting period (e.g. when the latter is 36 h). In these cases, a simpler method such as a fixed linear combination or a simple ensemble mean may lead to the smallest forecast errors. In environments where surface currents have strong mean-kinetic energies (e.g. the Western Adriatic Current), dynamic methods can be particularly successful in predicting the drift of surface waters. In any case, the dynamic hyper-ensemble methods allow to estimate a characteristic time during which the model weights are more or less stable, which allows predicting how long the obtained combination will be valid in forecasting mode, and hence to choose which hyper-ensemble method one should use.
Centre/Unité de recherche :
Centre Interfacultaire de Recherches en Océanologie - MARE - GHER
Disciplines :
Sciences de la terre & géographie physique
Auteur, co-auteur :
Vandenbulcke, Luc ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie physique
Beckers, Jean-Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie physique
Lenartz, Fabian ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie physique
Agarwal, Y., Terray, E., Donelan, M., Hwang, P., Williams, A.I., Drennan, W., Kahma, K., Kitagorodskii, S.A. 1992. Enhanced dissipation of kinetic energy beneath surface waves. Nature 359, 219-220.
Barbanti, R., Gerin, R., Poulain, P.-M., , 2007. Dart Drifter Database: 11 March 2006 to 1 January 2007.
Bennett, A.F., 1992. Inverse Methods in Physical Oceanography. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press.
Carniel, S., Umgiesser, G., Sclavo, M., Kantha, L., Monti, S. 2002. Tracking the drift of a human body in the coastal ocean using numerical prediction models of the oceanic atmospheric and wave conditions. Science and Justice 42, 143-151.
Chiggiato, J., Oddo, P. 2008. Operational ocean models in the Adriatic Sea: a skill assessment. Ocean Science 4 (1), 61-71. http://www.ocean-sci.net/4/61/2008/.
Coelho, F., Peggion, G., Rowley, C., Jacobs, G., Allard, R., Rodriguez E. in press. A noteon NCOM temperature forecast error calibration using the ensemble transform. Journal of Marine Systems. Available online 28 February Available online 28 February,in press 2009
Davis, R.E. 1985. Drifter observation of coastal currents during CODE. The method and descriptive view. Journal of Geophysical Research 90, 4655-4741.
Doucet. A., Godsill, S., Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering statistics and computing. Statistics and Computing, 197-208.
Ekman, V. 1905. On the influence of the earth's rotation on ocean currents. Arkiv for Mathematik, Astronomiocho Fysik. 2 (11)
Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic
Everitt, B. 2002. Cambridge Dictionary of Statistics. Cambridge University Press.
Goh, S., Mandic, D., 2007. An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks. Neural Computation 19 (4), 1039- 1055.
Griffa, A., Piterbarg, L.I., Ozgokmen, T. 2004. Predictability of lagrangian particle trajectories: effects of smoothing of the underlying eulerian flow. Journal of Marine Research 62, 1-35.
Haza, A.C., Griffa, A., Martin, P., Molcard, A., Ozgokmen, T.M., Poje, A.C., Barbanti, R., Book, J.W., Poulain, P.-M., Rixen, M., Zanasca, P. 2007. Model-based directed drifter launches in the Adriatic sea: results from the DART experiment. Geophysical Research Letters 34, L10605. doi:10.1029/2007GL029634.
Ivatek-Sahdan, S., Tudor, M. 2004. Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorologische Zeitschrift 13, 1-10.
Kalman, R., 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82 (D), 35-45.
Kalnay, E., Ham, M., 1989. Forecasting forecast skill in the Southern Hemisphere. In: Preprints of the 3rd International Conference on Southern Hemisphere Meteorology and Oceanography, Buenos Aires, 13-17 November.
Krishnamurti, T., Kishtawal, C., LaRow, T., Bachiochi, D., Zhang, Z., Williford, C., Gadgil, S., Surendran, S. 1999. Improved weather and seasonal climate forecasts from Multimodel Superensemble. Science 285, 1548-1550.
Lermusiaux, P., Chiu, C.-S., Gawarkiewicz, G., Abbot, P., Robinson, A., Miller, R., Haley, P., Leslie, W., Majumdar, S., Pang, A., Lekien, F. 2006. Quantifying uncertainties in Ocean Predictions. Oceanography 19 (1), 92-105 (Special issue on "dvances in Computational Oceanography".
Madsen, O. 1977. A realistic model of the wind-induced Ekman boundary layer. Journal of Physical Oceanography 7, 248-255.
Maeng-Ki, K., In-Sik, K., Chung-Kyu, P., Kyu-Myong, K. 2004. Superensemble prediction of regional precipitation over Korea. International Journal of Climatology 24, 777-790.
Martin, P., Book, J., Burrage, D., Rowley, C., Tudor, M. 2009. Comparison of modelsimulated and observed currents in the Central Adriatic during DART. Journal of Geophysical Research 114, C01S05, doi:10.1029/2008JC004842
Mutemi, J., Ogallo, L., Krishnamurti, T., Mitra, A., Vijaya Kumar, T. 2007. Multimodel based superensemble forecasts for short and medium range NWP over various regions of Africa. Meteorology and Atmospheric Physics 95, 87-113.
Paldor, N., Dvorkin, Y., Mariano, A. Özgökmen, T., Ryan, E. 2004. A practical, hybrid model for predicting the trajectories of near-surface ocean drifters. Journal of Atmospheric and Oceanic Technology 21, 1246-1258.
Pham, D.T., Verron, J., Roubaud, M.C. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. Journal of Marine Systems 16 (3-4), 323-340. October.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Le Traon, P.-Y., Maillard, C., Manzella, G., Tziavos, C. 2003. The Mediterranean ocean forecasting system: first phase of implementation (1998-2001). Annales Geophysicae 21, 1-18.
Poulain, P.-M. 1999. Drifter observations of surface circulation in the Adriatic Sea between December 1994 andMarch 1996. Journal of Marine Systems20, 231-253.
Poulain, P.-M., Gerin, R., Mauri, E., Pennel, R. 2009. Wind effects on drogued and undrogued drifters in the Eastern Mediterranean. Journal of Atmospheric and Oceanic Technology, doi:10.1175/2008JTECH0618.1.
Poulain, P.-M., Zambianchi, E. 2007. Surface circulation in the central mediterranean sea as deduced from lagrangian drifters in the 1990s. Continental Shelf Research 27, 981-1001.
Rascle, N., Ardhuin, F., 2009. Drift and mixing under the ocean surface revisited: stratified conditions and model-data comparisons. Journal of Geophysical Research 114, C01S05, doi:10.1029/2007JC004466.
Rascle, N., Ardhuin, F., Terray, E. 2006. Drift and mixing under the ocean surface: a coherent one-dimensional description with application to unstratified conditions. Journal of Geophysical Research, 111.
Rixen, M., Book, J., Carta, A., Grandi, V., Gualdesi, L., Stoner, R., Ranelli, P., Cavanna, A., Zanasca, P., Baldasserini, G., Trangeled, A., Lewis, C., Trees, C., Grasso, R., Giannechini, S., Fabiani, A., Merani, D., Berni, A., Leonard, M., Martin, P., Rowley, C., Hulbert, M., Quaid, A., Goode, W., Preller, R., Pinardi, N., Oddo, P., Guarnieri, A., Chiggiato, J., Carniel, S., Russo, A., Tudor, M., Lenartz, F., Vandenbulcke L., in press. Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles. Journal of Marine Systems. Available online 28 February 2009.
Rixen, M., Ferreira-Coelho, E. 2007. Operational surface drift prediction using linear and non-linear hyper-ensemble statistics on atmospheric and ocean models. Journal of Marine Systems 65, 105-121.
Rixen, M., Ferreira-Coelho, E., Signell, R. 2008. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: uncertainties and probability distribution areas. Journal of Marine Systems 69, 86-98.
Rubio A., Taillandier V., Garreau P. Reconstruction of the mediterranean northern current variability and associated cross-shelf transport in the gulf of lions from satellite-tracked drifters and model outputs. Journal of Marine Systems, in press Available online 28 February 2009; .
Shin, D., Krishnamurti, T., 2003. Short- to medium-range superensemble precipitation forecasts using satellite products: 1. Deterministic forecasting. Journal of Geophysical Research, 108.
Shin, D., Krishnamurti, T. 2003. Short- to medium-range superensemble precipitation forecasts using satellite products: 2. Probabilistic forecasting. Journal of Geophysical Research, 108.
Tonani, M., Pinardi, N., Dobricic, S., Pujol, I., Fratianni, C. 2008. A high-resolution free-surface model of the Mediterranean Sea. Ocean Science 4, 1-14
Tsahalis, D., 1979. Theoretical and experimental study of wind- and wave-induced drift. Journal of Physical Oceanography 9, 1243-1257
Ursella, L., Poulain, P.-M., Signell, R.P. 2006. Surface drifter derived circulation in the northern and middle Adriatic Sea: response to wind regime and season. Journal of Geophysical Research 112, C03S04. doi:10.1029/2005JC003177.
van Leeuwen, P. 2003. A variance-minimizing filter for large-scale applications. Monthly Weather Review 131, 2071-2084.
Veneziani, M., Griffa, A., Poulain, P. 2007. Historical drifter data and statistical prediction of particle motion: a case study in the Central Adriatic Sea. Journal of Atmospheric and Oceanic Technology 24, 235-254.
Williford, C.E., Krishnamurti, T., Torres, R., Cocke, S. 2003. Real-time multi-model superensemble forecasts of Atlantic tropical systems of 1999. Monthly Weather Review 131, 1878-1894.
Yun, W., Stefanova, L., Krishnamurti, T. 2003. Improvement of the multimodel superensemble technique for seasonal forecasts. Journal of Climate 16, 3834- 3840.
Yun, W., Stefanova, L., Mitra, A., Vijaya Kumar, T., Dewar, W., Krishnamurti, T. 2005. A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts. Tellus 57, 280-289.
Zanasca, P., Gerin, R., Poulain, P.-M. 2007. MREA07-LASIE07 Drifter Database: 14 May 2007 to 19 October 2007. http://doga.ogs.trieste.it/sire/drifter/mrea07-lasie07_database/.