Baral, C. and Hunsaker, M. (2007). Using the probabilistic logic programming p-log for causal and counterfactual reasoning and non-naive conditioning. IJCAI 07, 243-249.
Blest, D. C. (2000). Theory and methods: Rank correlation-an alternative measure. Australian and New Zealand Journal of Statistics, 42(1), 101-111.
Bontempi, G. and Meyer, P. E. (2010). Causal filter selection in microarray data. Proceedings of the 27 th International Conference on Machine Learning (ICML 10), 95-102.
Butte, A. J., and Kohane, I. S. (2000). Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing, 5, 418-429.
Sahoo, D., Dill, D. L., Gentles, A. J., Tibshirani R., and Plevritis, S. K. (2008). Boolean implication networks derived from large scale, whole genome microarray datasets. Genome Biology, 9(10), R157.
Duch, W., Winiarski, T., Biesiada, J., and Kachel, A. (2003). Feature selection, and ranking filters. International Conference on Artificial Neural Networks (ICANN), and International Conference on Neural Information Processing (ICONIP), 251-254.
Faith, J., Hayete, B., Thaden, J., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J., and Gardner, T. (2007). Large-scale mapping, and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5(1), 54-66.
Gras, R., Kuntz, P., and Briand, H. (2001). Les fondements de l'analyse statistique implicative et quelques prolongements pour la fouille de données. Mathématiques et Sciences Humaines. Mathematics, and Social Sciences, 154-155, 9-29.
Haenni, R. (2005). Towards a unifying theory of logical, and probabilistic reasoning. ISIPTA 05, 4 th International Symposium on Imprecise Probabilities, and Their Applications, 5, 193-202.
jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press.
Josang, A. (2007). Probabilistic logic under uncertainty. Proceedings of the Thirteenth Australian Symposium on Theory of Computing, 65, 101-110. Australian Computer Society, Inc.
Liu, J., and Desmarais, M. (1997). A method learning implication networks from empirical data: Algorithm, and monte-carlo simulation-based validation. IEEE Transactions on Knowledge, and Data Engineering, 9(6), 990-1004.
Mango, A. (1997). Rank correlation coefficients: A new approach. Computational Statistics, and Data Analysis on the Eve of the 21st Century. Proceedings of the Second World Congress of the IASC, 29, 471-476.
Marbach, D., Schaffter, T., Mattiussi, C., and Floreano, D. (2009). Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology, 16(2), 229-239.
Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., and Califano, A. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics, 7, 1-15.
Meyer, P. E., Kontos, K., Lafitte, F., and Bontempi, G. (2007). Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics, and Systems Biology, Special Issue on Information-Theoretic Methods for Bioinformatics, DOI: 10.1155/2007/79879.
Nelsen, R. B. (2001). Kendall tau metric. Encyclopedia of Mathematics, 3, 226-227.
Olsen, C., Meyer, P. E., and Bontempi, G. (2009). On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information. EURASIP Journal on Bioinformatics, and Systems Biology, DOI: 10.1155/2009/308959.
Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance,, and min-redundancy. IEEE Transactions on Pattern Analysis, and Machine Intelligence, 27(8), 1226-1238.
Raedt, L. D., and Kersting, K. (2003). Probabilistic logic learning. ACM SIGKDD Explorations Newsletter, 5(1), 31-48.
Torgo, L. http://www.liaad.up.pt/ltorgo/regression/datasets.html.
Yu, L., and Liu, H. (2004). Efficient feature selection via analysis of relevance, and redundancy. Journal of Machine Learning Research, 5, 1205-1224.