scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Lemmon, E., Huber, M., and McLinden, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. 2013.
Kunz, O., Klimeck, R., Wagner, W., and Jaeschke, M. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures; VDI Verlag GmbH: Düsseldorf, 2007.
Kunz, O.; Wagner, W. The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004 J. Chem. Eng. Data 2012, 57, 3032-3091
Lemmon, E. W.; Jacobsen, R. T. A Generalized Model for the Thermodynamic Properties of Mixtures Int. J. Thermophys. 1999, 20, 825-835
Lemmon, E.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen from 60 to 2000 K at Pressures to 2000 MPa J. Phys. Chem. Ref. Data 2000, 29, 331-385
Lemmon, E. W.; Jacobsen, R. T. Equations of State for Mixtures of R-32, R-125, R-134a, R-143a, and R-152a J. Phys. Chem. Ref. Data 2004, 33, 593-620
Span, R.; Wagner, W. Equations of State for Technical Applications. III. Results for Polar Fluids Int. J. Thermophys. 2003, 24, 111-162
Span, R.; Wagner, W. Equations of State for Technical Applications. II. Results for Nonpolar Fluids Int. J. Thermophys. 2003, 24, 41-109
Span, R.; Wagner, W.; Lemmon, E.; Jacobsen, R. Multiparameter Equations of State-Recent Trends and Future Challenges Fluid Phase Equilib. 2001, 183-184, 1-20
Guder, C.; Wagner, W. A Reference Equation of State for the Thermodynamic Properties of Sulfur Hexafluoride SF6 for Temperatures from the Melting Line to 625 K and Pressures up to 150 MPa J. Phys. Chem. Ref. Data 2009, 38, 33-94
Leachman, J.; Jacobsen, R.; Penoncello, S.; Lemmon, E. Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen J. Phys. Chem. Ref. Data 2009, 38, 721-748
Lemmon, E. W.; McLinden, M. O.; Wagner, W. Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa J. Chem. Eng. Data 2009, 54, 3141-3180
Buecker, D.; Wagner, W. A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa J. Phys. Chem. Ref. Data 2006, 35, 205-266
Buecker, D.; Wagner, W. Reference Equations of State for the Thermodynamic Properties of Fluid Phase n -Butane and Isobutane J. Phys. Chem. Ref. Data 2006, 35, 929-1019
Lemmon, E. W.; Jacobsen, R. T. A New Functional Form and New Fitting Techniques for Equations of State with Application to Pentafluoroethane (HFC-125) J. Phys. Chem. Ref. Data 2005, 34, 69-108
Schroeder, J. A. A New Fundamental Equation for Ethanol. M.Sc. thesis, University of Idaho, Moscow, ID, 2011.
Span, R.; Lemmon, E. W.; Jacobsen, R. T.; Wagner, W.; Yokozeki, A. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa J. Phys. Chem. Ref. Data 2000, 29, 1361-1433
Gedanitz, H.; Dávila, M. J.; Lemmon, E. W. Speed of sound measurements and a fundamental equation of state for cyclopentane. To be published, preprint provided by Eric Lemmon.
Ortiz-Vega, D.; Hall, K.; Arp, V.; Lemmon, E. Unpublished: coefficients from REPROP with permission.
Lemmon, E.; Overhoff, U.; McLinden, M.; Wagner, W. Personal communication with Eric Lemmon.
McLinden, M.; Lemmon, E. Thermodynamic Properties of R-227ea, R-365mfc, R-115, and R-13I1. J. Chem. Eng. Data To be submitted.
Thol, M.; Lemmon, E. W.; Span, R. Unpublished.
Bell, I. CoolProp: An open-source thermophysical property library. 2013, http://coolprop.sf.net (accessed).
Klein, S. Engineering Equation Solver; F-Chart Software: Madison, WI, 2010.
Wagner, W. http://www.thermo.rub.de/en/prof-w-wagner/software/fluidcal. html (accessed).
Kretzschmar, H.-J.; Stöcker, I. http://thermodynamik.hs-zigr.de/ cmsfg/Stoffwertbibliothek/index.php (accessed).
Pye, J. http://ascend4.org/FPROPS (accessed).
Thorade, M. https://github.com/thorade/HelmholtzMedia (accessed).
Span, R. Multiparameter Equations of State; Springer: New York, 2000.
Bender, E. Equations of State Exactly Representing the Phase Behavior of Pure Substances. Proceedings of the Fifth Symposium on Thermophys. Prop., ASME, New York, 1970.
Thorade, M.; Saadat, A. Partial Derivatives of Thermodynamic State Properties for Dynamic Simulation Environ. Earth Science 2013, 70, 3497
Span, R.; Lemmon, E. W.; Jacobsen, R. T.; Wagner, W.; Yokozeki, A. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 K J. Phys. Chem. Ref. Data 2000, 29, 1361-1433
Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use J. Phys. Chem. Ref. Data 2002, 31, 387-535
de Reuck, K.; Craven, R. Methanol: International Thermodynamic Tables of the Fluid State-12; Blackwell Scientific Publications: Hoboken, NJ, 1993.
Miyagawa, K.; Hill, P. Rapid and Accurate Calculation of Water and Steam Properties Using the Tabular Taylor Series Expansion Method J. Eng. Gas Turbines Power 2001, 123, 707-712
Aly, F. A.; Lee, L. L. Self-Consistent Equations for Calculating the Ideal Gas Specific Heat Capacity, Enthalpy, and Entropy Fluid Phase Equilib. 1981, 6, 169-179
Akasaka, R. A Reliable and Useful Method to Determine the Saturation State from Helmholtz Energy Equations of State J. Thermal Sci. Technol. 2008, 3, 442-451
Brent, R. Algorithms for Minimization without Derivatives; Prentice-Hall: Englewood Cliffs, NJ, 1973; Chapter 4.
Huber, M.; Perkins, R.; Laesecke, A.; Friend, D.; Sengers, J.; Assael, M.; Metaxa, I.; Vogel, E.; Mareš, R.; Miyagawa, K. New International Formulation for the Viscosity of H2O J. Phys. Chem. Ref. Data 2009, 38, 101-125
Vesovic, V.; Wakeham, W.; Olchowy, G.; Sengers, J.; Watson, J.; Millat, J. The Transport Properties of Carbon Dioxide J. Phys. Chem. Ref. Data 1990, 19, 763-808
Neufeld, P. D.; Janzen, A. R.; Aziz, R. A. Empirical Equations to Calculate 16 of the Transport Collision Integrals (l,s)* for the Lennard-Jones (12-6) Potential J. Chem. Phys. 1972, 57, 1100-1102
Vogel, E.; Küchenmeister, C.; Bich, E.; Laesecke, A. Reference Correlation of the Viscosity of Propane J. Phys. Chem. Ref. Data 1998, 27, 947-970, 5
Vogel, E.; Kuechenmeister, C.; Bich, E. Viscosity for n -Butane in the Fluid Region High Temp.-High Pressures 1999, 31, 173-186
Vogel, E.; Kuechenmeister, C.; Bich, E. Viscosity Correlation for Isobutane over Wide Ranges of the Fluid Region Int. J. Thermophys 2000, 21, 343-356
Friend, D. G.; Rainwater, J. C. Transport Properties of a Moderately Dense Gas Chem. Phys. Lett. 1984, 107, 590-594
Rainwater, J. C.; Friend, D. G. Second Viscosity and Thermal-Conductivity Virial Coefficients of Gases: Extension to Low Reduced Temperature Phys. Rev. A 1987, 36, 4062-4066
Batschinski, A. Untersuchungen iiber die innere Reibung der Flussigkeiten Z. Phys. Chem. 1913, 84, 643-706
Hildebrand, J. Motions of Molecules in Liquids: Viscosity and Diffusivity Science 1971, 174, 490-493
Kiselev, S. B.; Ely, J. F.; Abdulagatov, I. M.; Huber, M. L. Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application for n -Alkanols Ind. Eng. Chem. Res. 2005, 44, 6916-6927
Quiñones-Cisneros, S. E.; Schmidt, K. A. G.; Giri, B. R.; Blais, P.; Marriott, R. A. Reference Correlation for the Viscosity Surface of Hydrogen Sulfide J. Chem. Eng. Data 2012, 57, 3014-3018
Quiñones-Cisneros, S.; Huber, M.; Deiters, U. Correlation for the Viscosity of Sulfur Hexafluoride (SF6) from the Triple Point to 1000 K and Pressures to 50 MPa J. Phys. Chem. Ref. Data 2012, 41, 023102-1:11
Olchowy, G. A.; Sengers, J. V. A Simplified Representation for the Thermal Conductivity of Fluids in the Critical Region Int. J. Thermophys. 1989, 10, 417-426
Huber, M. L.; Laesecke, A.; Perkins, R. A. Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a Ind. Eng. Chem. Res. 2003, 42, 3163-3178
Mulero, A.; Cachadiña, I.; Parra, M. I. Recommended Correlations for the Surface Tension of Common Fluids J. Phys. Chem. Ref. Data 2012, 41, 043105-1:13
Lemmon, E.; Huber, M.; McLinden, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0. 2010.
Miqueu, C.; Broseta, D.; Satherley, J.; Mendiboure, B.; Lachaise, J.; Graciaa, A. An Extended Scaled Equation for the Temperature Dependence of the Surface Tension of Pure Compounds Inferred from an Analysis of Experimental Data Fluid Phase Equilib. 2000, 172, 169-182
Kamei, A.; Beyerlein, S. W.; Jacobsen, R. T. Application of Nonlinear Regression in the Development of a Wide Range Formulation for HCFC-22 Int. J. Thermophys. 1995, 16, 1155-1164
Marsh, K. N.; Perkins, R. A.; Ramires, M. L. V. Measurement and Correlation of the Thermal Conductivity of Propane from 86 to 600 K at Pressures to 70 MPa J. Chem. Eng. Data 2002, 47, 932-940
Huber, M. L.; Laesecke, A.; Perkins, R. A. Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a Ind. Eng. Chem. Res. 2003, 42, 3163-3178
Huber, M.; Hanley, H. In The Corresponding-States Principle: Dense Fluids; Millat, J.; Dymond, J.; de Castro, C. N., Eds.; Cambridge University Press: Cambridge, U.K., 1996; Chapter 12, pp 283-309.
Estela-Uribe, J.; Trusler, J. Extended Corresponding States Model for Fluids and Fluid Mixtures I. Shape Factor Model for Pure Fluids Fluid Phase Equilib. 2003, 204, 15-40
McLinden, M. O.; Klein, S. A.; Perkins, R. A. An Extended Corresponding States Model for the Thermal Conductivity of Refrigerants and Refrigerant Mixtures Int. J. Refrig. 2000, 23, 43-63
Huber, M. L.; Ely, J. F. Prediction of Viscosity of Refrigerants and Refrigerant Mixtures Fluid Phase Equilib. 1992, 80, 239-248
Chung, T.-H.; Ajlan, M.; Lee, L. L.; Starling, K. E. Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties Ind. Eng. Chem. Res. 1988, 27, 671-679
Chichester, J. C.; Huber, M. L. NISTIR 6650: Documentation and Assessment of the Transport Property Model for Mixtures Implemented in NIST REFPROP (Version 8.0); June 2008.
Poling, B. E.; Prausnitz, J. M.; O'Connell, J. P. The Properties of Gases and Liquids, 5 th ed.; McGraw Hill: New York, 2001.
Klein, S.; McLinden, M.; Laesecke, A. An Improved Extended Corresponding States Method for Estimation of Viscosity of Pure Refrigerants and Mixtures Int. J. Refrig. 1997, 20, 208-217
Melinder, Å. Properties of Secondary Working Fluids for Indirect Systems; International Institute of Refrigeration: Paris, 2010.
Herrmann, S.; Kretzschmar, H.-J.; Gatley, D. ASHRAE RP-1485: Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice. ASHRAE 2010 Winter Conference, Orlando, FL, Jan. 23-27, 2009.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.