Andriotis VM, Pike MJ, Kular B, Rawsthorne S, Smith AM. 2010. Starch turnover in developing oilseed embryos. New Phytologist 187, 791-804.
Argueso JL, Carazzolle MF, Mieczkowski PA, et al. 2009. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Research 19, 2258-2270.
Bantan-Polak T, Kassai M, Grant KB. 2001. A comparison of fuorescamine and naphthalene-2, 3-dicarboxaldehyde fuorogenic reagents for microplate-based detection of amino acids. Analytical Biochemistry 297, 128-136.
Baurain D, Dinant M, Coosemans N, Matagne RF. 2003. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. Plant Physiology 131, 1418-1430.
Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purifcation. Canadian Journal of Biochemistry and Physiology 37, 911-917.
Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A. 2007. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19, 3491-3503.
Castaings L, Camargo A, Pocholle D, et al. 2009. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal 57, 426-435.
Coruzzi GM, Zhou L. 2001. Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects'. Current Opinion in Plant Biology 4, 247-253.
Daniel-Vedele F, Filleur S, Caboche M. 1998. Nitrate transport: a key step in nitrate assimilation. Current Opinion in Plant Biology 1, 235-239.
de Montaigu A, Sanz-Luque E, Galvan A, Fernandez E. 2010. A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. Plant Cell 22, 1532-1548.
EL-Sheekh MM. 1993. Lipid and FA composition of photautotrophically and heterotrophically grown Chlamydomonas reihardtii. Biologia Plantarum 35, 435-441.
Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C. 2012. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant and Cell Physiology 53, 1380-1390.
Fernandez E, Cardenas J. 1982. Regulation of the nitrate-reducing system enzymes in wild-type and mutant strains of Chlamydomonas reinhardii. Molecular Genetics and Genomics 186, 164-169.
Fernandez E, Galvan A. 2007. Inorganic nitrogen assimilation in Chlamydomonas. Journal of Experimental Botany 58, 2279-2287.
Fernández E, Matagne R. 1984. Genetic analysis of nitrate reductase-defcient mutants in Chlamydomonas reinhardii. Current Genetics 8, 635-640.
Fernandez E, Matagne RF. 1986. In vivo complementation analysis of nitrate reductase-defcient mutants in Chlamydomonas reinhardtii. Current Genetics 10, 397-403.
Fernandez E, Schnell R, Ranum LP, Hussey SC, Silfow CD, Lefebvre PA. 1989. Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, USA 86, 6449-6453.
Florencio FJ. 1983. Separation, purifcation, and characterization of two isoforms of glutamine synthetase from Chlamydomonas reinhardii. Zeitschrift für Naturforschung 38c, 531-538.
Gerendás J, Zhu Z, Bendixen R, Ratcliffe RG, Sattelmacher B. 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeitschrift für Pfanzenernährung und Bodenkunde 160, 239-251.
Gerin S, Mathy G, Blomme A, Franck F, Sluse FE. 2010. Plasticity of the mitoproteome to nitrogen sources (nitrate and ammonium) in Chlamydomonas reinhardtii: the logic of Aox1 gene localization. Biochimica et Biophysica Acta 1797, 994-1003.
Gonzalez-Ballester D, Camargo A, Fernandez E. 2004. Ammonium transporter genes in Chlamydomonas: the nitrate-specifc regulatory gene Nit2 is involved in Amt1;1 expression. Plant Molecular Biology 56, 863-878.
Gonzalez-Ballester, D, de Montaigu, A, Higuera, JJ, Galvan, A, Fernandez, E. 2005. Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. Plant Physiology 137, 522-533.
Harris E. 1989. The Chlamydomonas sourcebook. San Diego, CA: Academic Press.
Huppe HC, Farr TJ, Turpin DH. 1994. Coordination of chloroplastic metabolism in N-limited Chlamydomonas reinhardtii by redox modulation. II. Redox modulation activates the oxidative pentose phosphate pathway during photosynthetic nitrate assimilation). Plant Physiology 105, 1043-1048.
Kalakoutskii and Fernández. 1995. Chlamydomonas reinhardtii nitrate reductase complex has 105 kDa subunits in the wild-type strain and a structural mutant. Plant Science 105, 195-206.
Kirst H, Garcia-Cerdan JG, Zurbriggen A, Melis A. 2012. Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiology 158, 930-945.
Konishi, M, and Yanagisawa, S. 2013. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications 19, 1617.
Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D. 2011. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal 66, 770-780.
Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q. 2010a. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering 12, 387-391.
Li Y, Han D, Hu G, Sommerfeld M, Hu Q. 2010b. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering 107, 258-268.
Liang Y, Sarkany N, Cui Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31, 1043-1049.
Llamas A, Igeno MI, Galvan A, Fernandez E. 2002. Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. The Plant Journal 30, 261-271.
Matthew T, Zhou W, Rupprecht J, et al. 2009. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. Journal of Biological Chemistry 284, 23415-23425.
Miller AJ, Fan X, Shen Q, Smith SJ. 2008. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany 59, 111-119.
Moellering ER, Benning C. 2010. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell 9, 97-106.
Purvis AC, Peters DB, Hageman RH. 1974. Effect of carbon dioxide on nitrate accumulation and nitrate reductase induction in corn seedlings. Plant Physiology 53, 934-941.
Quesada A, Galvan A, Schnell RA, Lefebvre PA, Fernandez E. 1993. Five nitrate assimilation-related loci are clustered in Chlamydomonas reinhardtii. Molecular Genetics and Genomics 240, 387-394.
Quesada A, Gomez I, Fernandez E. 1998a. Clustering of the nitrite reductase gene and a light-regulated gene with nitrate assimilation loci in Chlamydomonas reinhardtii. Planta 206, 259-265.
Quesada A, Hidalgo J, Fernandez E. 1998b. Three Nrt2 genes are differentially regulated in Chlamydomonas reinhardtii. Molecular Genetics and Genomics 258, 373-377.
Ramazanov A, Ramazanov Z. 2006. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycological Research 54, 255-259.
Rexach J, Fernandez E, Galvan A. 2000. The Chlamydomonas reinhardtii Nar1 gene encodes a chloroplast membrane protein involved in nitrite transport. Plant Cell 12, 1441-1453.
Riekhof WR, Sears BB, Benning C. 2005. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryotic Cell 4, 242-252.
Sakakibara H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology 57, 431-449.
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136, 2483-2499.
Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M. 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783-798.
Siaut M, Cuiné S, Cagnon C, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11, 7.
Stitt M, Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment 22, 583-621.
Stitt M. 1999. Nitrate regulation of metabolism and growth. Current Opinion in Plant Biology 2, 178-186.
Stobart K, Mancha M, Lenman M, Dahlqvist A, Stymne S. 1997. Triacylglycerols are synthesised and utilized by transacylation reactions in microsomal preparations of developing saffower (Carthamus tinctorius L) seeds. Planta 203, 58-66.
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M. 2009. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant, Cell & Environment 32, 300-318.
Van den Koornhuyse N, Libessart N, Delrue B, Zabawinski C, Decq A, Iglesias A, Carton A, Preiss J, Ball S. 1996. Control of starch composition and structure through substrate supply in the monocellular alga Chlamydomonas reinhardtii. Journal of Biological Chemistry 271, 16281-16287.
Vanlerberghe GC, Joy KW, Turpin DH. 1991. Anaerobic metabolism in the N-limited green alga Selenastrum minutum: III. Alanine is the product of anaerobic ammonium assimilation. Plant Physiology 95, 655-658.
Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C. 2012. Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. Journal of Biotechnology 162, 3-12.
Vigeolas H, Mohlmann T, Martini N, Neuhaus HE, Geigenberger P. 2004. Embryo-specifc reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiology 136, 2676-2686.
Wang R, Guegler K, LaBrie ST, Crawford NM. 2000. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12, 1491-1509.
Wang R, Okamoto M, Xing X, Crawford NM. 2003. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1, 000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiology 132, 556-567.
Wijffels RH, Barbosa MJ. 2010. An outlook on microalgal biofuels. Science 329, 796-799.
Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC. 2010. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell 9, 1251-1261.
Zabawinski C, Van Den Koornhuyse N, D'Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix JM, Preiss J, Ball S. 2001. Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. Journal of Bacteriology 183, 1069-1077.
Zhang H, Forde BG. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409.
Zioni AB, Vaadia Y, Lips SH. 1971. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiologia Plantarum 24, 288-290.