[en] The phase purity and the lattice dynamics in bulk EuTiO3 were investigated both microscopically, using x-ray and neutron diffraction, Eu-151-Mossbauer spectroscopy, and Eu-151 nuclear inelastic scattering, and macroscopically using calorimetry, resonant ultrasound spectroscopy, and magnetometry. Furthermore, our investigations were corroborated by ab initio theoretical studies. The perovskite symmetry, Pm (3) over barm, is unstable at the M- and R-points of the Brillouin zone. The lattice instabilities are lifted when the structure relaxes in one of the symmetries: I4/mcm, Imma, R (3) over barc with relative relaxation energy around -25 meV. Intimate phase analysis confirmed phase purity of our ceramics. A prominent peak in the Eu specific density of phonon states at 11.5 meV can be modeled in all candidate symmetries. A stiffening on heating around room temperature is indicative of a phase transition similar to the one observed in SrTiO3, however, although previous studies reported the structural phase transition to the tetragonal I4/mcm phase our detailed sample purity analysis and thorough structural studies using complementary techniques did not confirm a direct phase transition. Instead, in the same temperature range, Eu delocalization is observed which might explain the lattice dynamical instabilities.
Disciplines :
Physics
Author, co-author :
Bessas, D.
Rushchanskii, K. Z.
Kachlik, M.
Disch, S.
Gourdon, O.
Bednarcik, J.
Maca, K.
Sergueev, I.
Kamba, S.
Lezaic, M.
Hermann, Raphaël ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Language :
English
Title :
Lattice instabilities in bulk EuTiO3
Publication date :
2013
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
American Physical Society, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. Li, K. C. K. Soh, and P. Wu, J. Alloys Compd. JALCEU 0925-8388 10.1016/j.jallcom.2003.10.017 372, 40 (2004).
H. D. Zhou and J. B. Goodenough, J. Phys. Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/17/46/023 17, 7395 (2005). (Pubitemid 41605881)
A. M. Glazer, Acta Crystallogr., Sect. B ACBCAR 0567-7408 10.1107/S0567740872007976 28, 3384 (1972).
T. R. McGuire, M. W. Shafer, R. J. Joenk, H. A. Alperin, and S. J. Pickart, J. Phys. Condens. Matter 37, 981 (1966).
T. Katsufuji and H. Takagi, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.64.054415 64, 054415 (2001).
J. H. Lee, Nature (London) NATUAS 0028-0836 10.1038/nature09331 466, 954 (2010).
J. Brous, I. Fankuchen, and E. Banks, Acta Crystallogr. ACCRA9 0365-110X 10.1107/S0365110X53000156 6, 67 (1953).
A. Bussmann-Holder, J. Köhler, R. K. Kremer, and J. M. Law, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.212102 83, 212102 (2011).
M. Allieta, M. Scavini, L. J. Spalek, V. Scagnoli, H. C. Walker, C. Panagopoulos, S. S. Saxena, T. Katsufuji, and C. Mazzoli, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.85.184107 85, 184107 (2012).
J. Köhler, R. Dinnebier, and A. Bussmann-Holder, Phase Transit. PHTRDP 0141-1594 10.1080/01411594.2012.709634 85, 949 (2012).
J.-W. Kim, P. Thompson, S. Brown, P. S. Normile, J. A. Schlueter, A. Shkabko, A. Weidenkaff, and P. J. Ryan, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.110.027201 110, 027201 (2013).
V. Goian, S. Kamba, O. Pacherová, J. Drahokoupil, L. Palatinus, M. Dušek, J. Rohlíček, M. Savinov, F. Laufek, W. Schranz, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.86.054112 86, 054112 (2012).
D. S. Ellis, H. Uchiyama, S. Tsutsui, K. Sugimoto, K. Kato, D. Ishikawa, and A. Q. R. Baron, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.86.220301 86, 220301 (2012).
J. L. Bettis, M.-H. Whangbo, J. Köhler, A. Bussmann-Holder, and A. R. Bishop, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.84.184114 84, 184114 (2011).
I. P. Swainson, C. Stock, P. M. Gehring, G. Xu, K. Hirota, Y. Qiu, H. Luo, X. Zhao, J.-F. Li, and D. Viehland, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.79.224301 79, 224301 (2009).
M. Kachlik, K. Maca, V. Goian, and S. Kamba, Mater. Lett. MLETDJ 0167-577X 10.1016/j.matlet.2012.01.055 74, 16 (2012).
M. Ross and J. S. Story, Rep. Prog. Phys. RPPHAG 0034-4885 10.1088/0034-4885/12/1/313 12, 291 (1949).
A. Huq, J. Hodges, L. Huke, and O. Gourdon, Z. Kristallogr. Proc. 1, 127 (2011).
J. C. R. H. J. Neuefeind, M. Feygenson, and K. K. Chipley, Nucl. Instrum. Methods Phys. Res. B NIMBEU 0168-583X 10.1016/j.nimb.2012.05.037 287, 68 (2012).
T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon, New York, 2003).
A. Migliori, J. Sarrao, W. M. Visscher, T. Bell, M. Lei, Z. Fisk, and R. Leisure, Physica B PHYBE3 0921-4526 10.1016/0921-4526(93)90048-B 183, 1 (1993).
E. Alp, W. Sturhahn, T. Toellner, J. Zhao, M. Hu, and D. Brown, Hyperfine Interact. HYINDN 0304-3843 10.1023/A:1025452401501 144-145, 3 (2002).
R. Rüffer and A. Chumakov, Hyperfine Interact. 0304-3834 10.1007/BF02150199 97-98, 589 (1996).
O. Leupold, J. Pollmann, E. Gerdau, H. D. Rüter, G. Faigel, M. Tegze, G. Bortel, R. Rüffer, A. I. Chumakov, and A. Q. R. Baron, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i1996-00169-0 35, 671 (1996).
K. Z. Rushchanskii, N. A. Spaldin, and M. Lezaic, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.85.104109 85, 104109 (2012).
J. Rodríguez-Carvajal, Physica B PHYBE3 0921-4526 10.1016/0921-4526(93)90108-I 192, 55 (1993).
V. Petříček, M. Dušek, and L. Palatinus, Jana2006. The Crystallographic Computing System (Institute of Physics, Praha, Czech Republic, 2006).
M. Kopecký, J. Fábry, and J. Kub, J. Appl. Crystallogr. JACGAR 0021-8898 10.1107/S0021889812011867 45, 393 (2012).
R. H. Herber, Chemical Mössbauer Spectroscopy (Plenum, New York, 1984).
X. Qiu, T. Proffen, J. F. Mitchell, and S. J. L. Billinge, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.177203 94, 177203 (2005). (Pubitemid 41492294)
I.-K. Jeong, T. W. Darling, J. K. Lee, T. Proffen, R. H. Heffner, J. S. Park, K. S. Hong, W. Dmowski, and T. Egami, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.147602 94, 147602 (2005). (Pubitemid 40620449)
C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Boin, J. Bloch, T. Proffen, and S. J. L. Billinge, J. Phys. Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/19/33/335219 19, 335219 (2007). (Pubitemid 47168270)
M. Christensen, N. Lock, J. Overgaard, and B. B. Iversen, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja063695y 128, 15657 (2006). (Pubitemid 44894106)
V. Kohn and A. Chumakov, Hyperfine Interact. 0304-3834 10.1023/A:1012689705503 125, 205 (2000). (Pubitemid 32267458)
The natural abundance of 151 Eu is 47.8% and no further isotopic enrichment was needed.
B. C. Sales, Semiconductors and Semimetals (Academic, New York, 2001).
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, Belmont, MA, 1976).
A. P. Petrović, Y. Kato, S. S. Sunku, T. Ito, P. Sengupta, L. Spalek, M. Shimuta, T. Katsufuji, C. D. Batista, S. S. Saxena, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.87.064103 87, 064103 (2013).
QD-PPMS, Heat Capacity Application Note 1085-152 A (Quantum Design, Inc, San Diego, CA, 2002).
M. C. Gallardo, R. Burriel, F. J. Romero, F. J. Gutiérrez, and E. K. H. Salje, J. Phys. Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/14/8/ 315 14, 1881 (2002). (Pubitemid 34221057)
A. V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E. K. H. Salje, and J. F. Scott, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i2000-00232-4 50, 41 (2000).
F. W. Lytle, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1702820 35, 2212 (1964).
W. Rehwald, Adv. Phys. ADPHAH 0001-8732 10.1080/00018737300101379 22, 721 (1973).
T. R. McGuire, B. E. Argyle, M. W. Shafer, and J. S. Smart, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1729501 34, 1345 (1963).
J. E. Greedan and McCarthy, Mater. Res. Bull. MRBUAC 0025-5408 10.1016/0025-5408(72)90250-4 7, 531 (1972).
N. L. Henderson, J. Baek, P. S. Halasyamani, and R. E. Schaak, Chem. Mater. CMATEX 0897-4756 10.1021/cm062934d 19, 1883 (2007). (Pubitemid 46686363)
K. Syamala, G. Panneerselvam, G. Subramanian, and M. Antony, Thermochim. Acta THACAS 0040-6031 10.1016/j.tca.2008.05.008 475, 76 (2008).
G. McCarthy, W. White, and R. Roy, J. Inorg. Nucl. Chem. JINCAO 0022-1902 10.1016/0022-1902(69)80476-8 31, 329 (1969).
Y. P. Varshni, Phys. Rev. B 1098-0121 10.1103/PhysRevB.2.3952 2, 3952 (1970).
W. F. Kuhs, Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 0108-7673 10.1107/S0108767391009510 48, 80 (1992).
B. Etschmann, N. Ishizawa, V. Streltsov, and S. Oishi, Z. Kristallogr. ZEKRDZ 0044-2968 10.1524/zkri.216.8.455.20357 216, 455 (2001). (Pubitemid 32777466)
E. A. Zhurova, Y. Ivanov, V. Zavodnik, and V. Tsirelson, Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 0108-7681 10.1107/S0108768100003906 56, 594 (2000).
International Tables for Crystallography (International Union of Crystallography, Chester, England, 1995).
E. S. R. Gopal, Specific Heats at Low Temperatures (Heywood, London, 1966).
K. Rushchanskii, S. Kamba, V. Goian, P. Vaněk, M. Savinov, J. Prokleška, D. Nuzhnyy, K. Knížek, F. Laufek, S. Eckel, Nat. Mater. 1476-1122 10.1038/nmat2799 9, 649 (2010).
V. V. Shvartsman, P. Borisov, W. Kleemann, S. Kamba, and T. Katsufuji, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.81.064426 81, 064426 (2010).
H. Akamatsu, Y. Kumagai, F. Oba, K. Fujita, H. Murakami, K. Tanaka, and I. Tanaka, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.83.214421 83, 214421 (2011).
T. Birol and C. J. Fennie, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.88.094103 88, 094103 (2013).
L. Sagarna, K. Z. Rushchanskii, A. Maegli, S. Yoon, S. Populoh, A. Shkabko, S. Pokrant, M. Lezaic, R. Waser, and A. Weidenkaff, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.4813098 114, 033701 (2013).
T. Matsunaga, N. Yamada, R. Kojima, S. Shamoto, M. Sato, H. Tanida, T. Uruga, S. Kohara, M. Takata, P. Zalden, Adv. Funct. Mater. 1616-301X 10.1002/adfm.201002274 21, 2232 (2011).
K. M. O. Jensen, E. S. Bozin, C. D. Malliakas, M. B. Stone, M. D. Lumsden, M. G. Kanatzidis, S. M. Shapiro, and S. J. L. Billinge, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.86.085313 86, 085313 (2012).
E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, and S. J. L. Billinge, Science SCIEAS 0036-8075 10.1126/science.1192759 330, 1660 (2010).
M. Christensen, S. Johnsen, and B. B. Iversen, Dalton Trans. 1477-9226 10.1039/b916400f 39, 978 (2010).
E. Dul'kin, J. Petzelt, S. Kamba, E. Mojaev, and M. Roth, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.3464968 97, 032903 (2010).
!Egami T., Ferro- and Antiferroelectricity, 2007, 69-88, in edited by N. Dalal and A. Bussmann-Holder, Vol. 124 (Springer, Heidelberg
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.