Ahmad, I., Li, Q. (1997). Testing symmetry of an unknown density function by kernel method. Journal of Nonparametric Statistics, 7, 279–293.
Akritas, M. G., Van Keilegom, I. (2001). Non-parametric estimation of the residual distribution. Scandinavian Journal of Statistics, 28, 549–567.
Amemiya, T. (1985). Advanced econometrics. Cambridge: Harvard University Press.
Bickel, P. J., Doksum, K. (1981). An analysis of transformations revisited. Journal of the American Statistical Association, 76, 296–311.
Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.
Box, G. E. P., Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society-Series B, 26, 211–252.
Carroll, R. J., Ruppert, D. (1988). Transformation and weighting in regression. New York: Chapman and Hall.
Chen, G., Lockhart, R. A., Stephens, A. (2002). Box-Cox transformations in linear models: Large sample theory and tests of normality. Canadian Journal of Statistics, 30, 177–234 (with discussion).
Cheng, F. (2005). Asymptotic distributions of error density and distribution function estimators in nonparametric regression. Journal of Statistical Planning and Inference, 128, 327–349.
Cheng, F., Sun, S. (2008). A goodness-of-fit test of the errors in nonlinear autoregressive time series models. Statistics and Probability Letters, 78, 50–59.
Dette, H., Kusi-Appiah, S., Neumeyer, N. (2002). Testing symmetry in nonparametric regression models. Journal of Nonparametric Statistics, 14, 477–494.
Efromovich, S. (2005). Estimation of the density of the regression errors. Annals of Statistics, 33, 2194–2227.
Einmahl, U., Mason, D. M. (2005). Uniform in bandwidth consistency of kernel-type function estimators. Annals of Statistics, 33, 1380–1403.
Escanciano, J. C., Jacho-Chavez, D. (2012). $$\sqrt{n}$$n-uniformly consistent density estimation in nonparametric regression. Journal of Econometrics, 167, 305–316.
Fitzenberger, B., Wilke, R. A., Zhang, X. (2010). Implementing box-cox quantile regression. Econometric Reviews, 29, 158–181.
Horowitz, J. L. (1998). Semiparametric methods in economics. New York: Springer.
Linton, O., Sperlich, S., Van Keilegom, I. (2008). Estimation of a semiparametric transformation model. Annals of Statistics, 36, 686–718.
Müller, U. U., Schick, A., Wefelmeyer, W. (2004). Estimating linear functionals of the error distribution in nonparametric regression. Journal of Statistical Planning and Inference, 119, 75–93.
Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9, 141–142.
Neumeyer, N., Dette, H. (2007). Testing for symmetric error distribution in nonparametric regression models. Statistica Sinica, 17, 775–795.
Neumeyer, N., Van Keilegom, I. (2010). Estimating the error distribution in nonparametric multiple regression with applications to model testing. Journal of Multivariate Analysis, 101, 1067–1078.
Pinsker, M. S. (1980). Optimal filtering of a square integrable signal in Gaussian white noise. Problems of Information Transmission, 16, 52–68.
Sakia, R. M. (1992). The Box-Cox transformation technique: A review. The Statistician, 41, 169–178.
Samb, R. (2011). Nonparametric estimation of the density of regression errors. Comptes Rendus de l’Académie des Sciences-Paris, Série I, 349, 1281–1285.
Shin, Y. (2008). Semiparametric estimation of the Box-Cox transformation model. Econometrics Journal, 11, 517–537.
Vanhems, A., Van Keilegom, I. (2011). Semiparametric transformation model with endogeneity: A control function approach. Journal of Econometrics (under revision).
Watson, G. S. (1964). Smooth regression analysis. Sankhy$$\overline{a}$$a¯-Series A, 26, 359–372.
Zellner, A., Revankar, N. S. (1969). Generalized production functions. Reviews of Economic Studies, 36, 241–250.