Bickel, P. J. and Li, B. (2006). Regularization in statistics (with discussion). Test 15 271-344. MR2273731
Bunea, F. (2004). Consistent covariate selection and post model selection inference in semiparametric regression. The Annals of Statistics 32 898-927. MR2065193
Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. Journal of the American Statistical Association 92 477-489. MR1467842
Chen, X., Linton, O. B. and Keilegom, I. V. (2003). Estimation of semiparametric models when the criterion function is not smooth. Econometrica 71 1591-1608. MR2000259
Fan, J., Feng, Y. and Song, R. (2011). Nonparametric independence screening in sparse ultra-high dimensional additive models. Journal of the American Statistical Association 106 544-557. MR2847969
Fan, J., Härdle, W. and Mammen, E. (1998). Direct estimation of lowdimensional components in additive models. The Annals of Statistics 26 943-971. MR1635422
Fan, J. and Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11 1031-1057. MR2189080
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96 1348-1360. MR1946581
Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 849-911. MR2530322
Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Para-metric Methods. Springer-Verlag, New York. MR1964455
Fu, W. J. (2003). Penalized estimating equations. Biometrics 59 126-132. MR1978479
Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039
Hunter, D. R. and Lange, K. (2000). Quantile regression via an MM algorithm. Journal of Computational and Graphical Statistics 9 60-77. MR1819866
Hunter, D. R. and Lange, K. (2004). A tutorial on MM algorithms. The American Statistician 58 30-37. MR2055509
Hunter, D. R. and Li, R. (2005). Variable selection using MM algorithms. The Annals of Statistics 33 1617-1642. MR2166557
Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of Econometrics 58 71-120. MR1230981
Johnson, B. A., Lin, D. Y. and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103 672-680. MR2435469
Kai, B., Li, R. and Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. The Annals of Statistics 39 305-332. MR2797848
Lee, S. (2003). Efficient semiparametric estimation of a partially linear quantile regression model. Econometric Theory 19 1-31. MR1965840
Li, R. and Liang, H. (2008). Variable selection in semiparametric regression modeling. The Annals of Statistics 36 261-286. MR2387971
Liang, H. and Li, R. (2009). Variable selection for partially linear models with measurement errors. Journal of the American Statistical Association 104 234-248. MR2504375
Liang, H., Wang, H. and Tsai, C.-L. (2012). Profiled forward regression for ultrahigh dimensional variable screening in semiparametric partially linear models. Statistica Sinica 22 531-554. MR2954351
Liang, H., Wang, S., Robins, J. M. and Carroll, R. J. (2004). Estimation in partially linear models with missing covariates. Journal of the American Statistical Association 99 357-367. MR2062822
Liang, H., Liu, X., Li, R. and Tsai, C.-L. (2010). Estimation and testing for partially linear single-index models. The Annals of Statistics 38 3811-3836. MR2766869
Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics 34 1436-1462. MR2278363
Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of Nonlin-ear Equations in Several Variables. Academic Press, San Diego. MR0273810
Pagan, A. and Ullah, A. (1999). Nonparametric Econometrics. Cambridge University Press, New York. MR1699703
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 461-464. MR0468014
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Jour-nal of the Royal Statistical Society, Series B (Methodological) 58 267-288. MR1379242
Tsay, R. S. (2005). Analysis of Financial Time Series, 2nd Edition. Wiley-Interscience, New York. MR2162112
van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer-Verlag, New York. MR1385671
Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. Journal of the American Statistical Association 104 1512-1524. MR2750576
Wang, H., Li, R. and Tsai, C.-L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94 553-568. MR2410008
Wang, H. J. and Wang, L. (2009). Locally weighted censored quantile regression. Journal of the American Statistical Association 104 1117-1128. MR2562007
Wang, H. and Xia, Y. (2009). Shrinkage estimation of the varying coefficient model. Journal of the American Statistical Association 104 747-757. MR2541592
Wang, C.-Y., Wang, S., Gutierrez, R. G. and Carroll, R. J. (1998). Local linear regression for generalized linear models with missing data. The Annals of Statistics 26 1028-1050. MR1635438
Wang, L., Liu, X., Liang, H. and Carroll, R. J. (2011). Estimation and variable selection for generalized additive partial linear models. The Annals of Statistics 39 1827-1851. MR2893854
Xie, H. and Huang, J. (2009). SCAD-penalized regression in high-dimensional partially linear models. The Annals of Statistics 37 673-696. MR2502647
Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics 38 894-942. MR2604701
Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine Learning Research 7 2541-2563. MR2274449