Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 μm absorption bands
Ingold, T.; Schmid, B.; Mätzler, C.et al.
2000 • In Journal of Geophysical Research, 105 (D19), p. 24327–24343
Ingold 2000 (JGR) - Modeled and empirical approaches for retrieving H2O from solar transmittance measurements in the 0.72, 0.82, and 0.94 um absorption bands.pdf
water vapor; atmospheric composition; infrared solar transmittance; sun photometer
Abstract :
[en] A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996–1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18–29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4, and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the FTS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the SPM with the FTS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ingold, T.; University of Bern, Bern, Switzerland > Institute of Applied Physics (IAP)
Schmid, B.; Bay Area Environmental Research Institute, San Francisco, California, USA
Mätzler, C.; University of Bern, Bern, Switzerland > Institute of Applied Physics (IAP)
Demoulin, Philippe ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Kämpfer, N.; University of Bern, Bern, Switzerland > Institute of Applied Physics (IAP)
Language :
English
Title :
Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 μm absorption bands
Publication date :
16 October 2000
Journal title :
Journal of Geophysical Research
ISSN :
0148-0227
eISSN :
2156-2202
Publisher :
American Geophysical Union (AGU), Washington, United States - District of Columbia
American Society of Mechanical Engineers, Instruments and apparatus, 1, Measurement uncertainty, ANSI/ASME PTC 19.1-1985, New York, 1986.
Bögel, W., Neue Näherungsformeln für den Sättigungsdruck des Wasserdampfs und für die in der Meteorologie gebräuchlichen Luftfeuchteparameter, Rep. DLR-FB 77-52, Dtsch. Forsch.- und Versuchsanst. für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 1977.
Bouffiès, S., F. M. Bréon, D. Tanré, and P. Dubuisson, Atmospheric water vapor estimate by differential absorption technique with the polarisation and directionality of the Earth reflectances (POLDER) instrument, J. Geophys. Res., 102, 3831-3841, 1997.
Bruegge, C. J., J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, and G. Toon, Water vapor column abundance retrievals during FIFE, J. Geophys. Res., 97, 18,759-18,768, 1992.
Bucholtz, A., Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Opt., 54, 2765-2773, 1995.
Cachorro, V. E., P. Utrillas, R. Vergaz, P. Durán, A. M. de Frutos, and J. A. Martinez-Lozano, Determination of the atmospheric-water-vapor content in the 940-nm absorption band by use of moderate spectral resolution measurements of direct solar irradiance, Appl. Opt., 37, 4678-4889, 1998.
Carleer, M., A. Jenouvrier, A.-C. Vandaele, P. F. Bernath, M. F. Mérienne, R. Colin, N. F. Zobov, O. L. Polyansky, J. Tennyson, and V. A. Savin, The near infrared, visible, and near ultraviolet overtone spectrum of water, J. Chem. Phys., 111, 2444-2450, 1999.
Carrère, V., and J. E. Conel, Recovery of atmospheric water vapor column abundance from imaging spectrometer data around 940 nm - Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data, Remote Sens. Environ., 44, 179-204, 1993.
Chu, W. P., E. W. Chiou, J. C. Larsen, L. W. Thomason, D. Rind, J. J. Buglia, S. Oltmans, M. P. McCormick, and L. M. McMaster, Algorithms and sensitivity analyses for Stratospheric Aerosol and Gas Experiment II water vapor retrieval, J. Geophys. Res., 95, 4857-4866, 1993.
Clough, S. A., F. X. Kneizys, L. S. Rothman, and W. O. Gallery, Atmospheric spectral transmittance and radiance: FASCOD1B, Proc. SPIE Int. Soc. Opt. Eng., 277, 152-166, 1981.
Clough, S. A., F. X. Kneizys, and R. W. Davies, Line shape and the water vapor continuum, Atmos. Res., 23, 229-241, 1989.
Clough, S. A., and M. J. Iacono, Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons, J. Geophys. Res., 100, 16,519-16,535, 1995.
Demoulin, P., C. B. Farmer, C. P. Rinsland, and R. Zander, Determination of absolute strengths of N2 quadrupole lines from high-resolution ground-based IR solar observation, J. Geophys. Res., 96, 13,003-13,008, 1991.
Dodson, A. H., J. Shardlow, L. C. M. Hubbard, G. Elegered, and P. O. J. Jarlemark, Wet tropospheric effects on relative GPS height determination, J. Geod., 70, 188-202, 1996.
Elgered, G., B. O. Rönnäng, and J. I. H. Askne, Measurement of atmospheric water vapour with microwave radiometry, Radio Sci., 17, 1258-1264, 1982.
Emardson, T. R., G. Elgered, and J. M. Johansson, Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers, J. Geophys. Res., 103, 1807-1820, 1998.
England, M. N., F. J. Schmidlin, and J. M. Johansson, Atmospheric moisture measurements: A microwave radiometer - radiosonde comparison , IEEE Trans. Geosci. Remote Sens., 31, 389-398, 1993.
Faizoun, C. A. A. Podaire, and G. Dedieu, Monitoring of Sahelian aerosol and atmospheric water vapor content characteristics from Sun photometer measurements, J. Appl. Meteorol., 33, 1291-1303, 1994.
Frouin, R., P.-Y. Deschamps, and P. Lecomte, Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: Theory and airborne verification, J. Appl. Meteorol., 29, 448-460, 1990.
Gao, B.-C., and A. F. H. Goetz, Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data, J. Geophys. Res., 95, 3549-3564, 1990.
Giver, L. P., C. Chackerian Jr., and P. Varanasi, Visible and infrared H216O line intensity corrections for HITRAN-96, J. Quant. Spectrosc. Radiat. Transfer, 66, 101-105, 2000.
Goody, R. M., and Y. L. Yung, Atmospheric Radiation, Theoretical Basis, 2nd ed., Oxford Univ. Press, New York, 1989.
Halthore, R. N., T. F. Eck, B. N. Holben, and B. L. Markham, Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band, J. Geophys. Res., 102, 4343-4352, 1997.
Heimo, A., R. Philipona, C. Fröhlich, C. Marty, and A. Ohmura, The Swiss Atmospheric Radiation Monitoring Network CHARM, WMO/TD-877, pp. 291-294, World Meteorol. Organ., Geneva, 1998.
Holben, B. N., et al., AERONET - A Federated Instrument Network and Data Archive for aerosol characterization, Remote Sens. Environ., 66, 1-16 , 1998.
Intergovernmental Panel on Climate Change (IPCC), Climate Change 1995: The Science of Climate Change, edited by J. T. Houghton, L. G. Meira Filho, B. A. Callendar, N. Harris, A. Kattenberg, and K. Maskell, 572 pp., Cambridge Univ. Press, New York, 1996.
Kasten, F., A new table and approximation formula for relative optical air mass, Arch. Meteorol. Geophys. Bioklimatol. Ser. B, 14, 206-223, 1965.
Kasten, F., and A. T. Young, Revised optical air mass tables and approximation formula, Appl. Opt., 28, 4735-4738, 1989.
Kaufman, Y. J., and B.-C. Gao, Remote sensing of water vapor in the near IR from EOS/MODIS, IEEE Trans. Geosci. Remote Sens., 30, 871-884, 1992.
King, M. D., and D. M. Byrne, A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer, J. Atmos. Sci., 33, 2242-2251, 1976.
Kneizys, F. X., et al., The Modtran 2/3 Report and LOWTRAN 7 Model, PL/GPOS, Phillips Lab., Geophys. Direct., Hanscom AFB, Mass., 1996.
Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 9, 112-147, 1997.
Learner, R. C. M., W. Zhong, J. D. Haigh, D. Belmiloud, and J. Clarke, The contribution of unkown weak water vapor lines to the absorption of solar radiation, Geophys. Res. Lett., 26, 3609-3612, 1999.
Liebe, H. J., MPM - An atmospheric millimeter-wave propagation model, Int. J. Infrared Millimeter Waves, 10, 631-650, 1989.
Liebe, H. J., and D. H. Layton, Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NIT Rep. 87-224, Natl. Telecommun. and Inf. Admin., Boulder, Colo., 1987.
Liebe, H. J., G. A. Hufford, and M. G. Cotton, Propagation modeling of moist air and suspended water/ice particles at frequencies below 100 GHz, paper presented at the AGARD 52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel, Advis. Group for Aerosp. Res. and Dev., Palma de Mallorca, Spain, May 17-21, 1993.
Lumpe, J. D., et al., POAM II retrieval algorithm and error analysis, J. Geophys. Res., 102, 23,593-23,614, 1997.
Mahieu, E., R. Zander, L. Delbouille, P. Demoulin, G. Roland, and C. Servais, Observed trends in total vertical column abundances of atmospheric gases from IR solar spectra recorded at the Jungfraujoch, J. Atmos. Chem., 28, 227-243, 1997.
Michalsky, J. J., J. C. Liljegren, and L. C. Harrison, A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of the same at the southern Great Plains atmospheric measurement site, J. Geophys. Res., 100, 25,995-26,003, 1995.
Noël, S., M. Buchwitz, H. Bovensmann, R. Hoogen, and J. B. Burrows, Atmospheric water vapor amounts retrieved from GOME satellite data, Geophys. Res. Lett., 26, 1841-1844, 1999.
Peter, R., and N. Kämpfer, Radiometrie determination of water vapour and liquid water and its validation with other techniques, J. Geophys. Res., 97, 18,173-18,183, 1992.
Plana-Fattori, A., M. Legrand, D. Tanré, C. Devaux, and A. Vermeulen, Estimating the atmospheric water vapor content from Sun photometer measurements, J. Appl. Meteorol., 37, 790-804, 1998.
Reagan, J. A., K. J. Thome, B. M. Herman, and R. Gall, Water vapor measurements in the 0.94 micron absorption band: Calibration, measurements and data applications, in Proceedings of IGARSS'87 Symposium, pp. 63-67, IEEE Press, Piscataway N. J., 1987a.
Reagan, J. A., P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, and A. Ben-David, Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations, IEEE Geosci. Remote Sens., 25, 647-653, 1987b.
Reagan, J. A., K. J. Thome, and B. M. Herman, A simple instrument and technique for measuring columnar water vapor via near-IR differential solar transmission measurements, IEEE Trans. Geosci. Remote Sens., 30, 825-831, 1992.
Reagan, J. A., K. J. Thome, B. M. Herman, R. Stone, J. DeLuisi, and J. Snider, A comparison of columnar water vapor retrievals obtained with a near-IR solar radiometer and microwave radiometer measurements, J. Appl. Meteorol., 34, 1384-1391, 1995.
Rohrbach, A., Wasserdampfmessungen mit GPS, diploma thesis, Univ. of Bern, Bern, Switzerland, 1999.
Rothacher, M., and L. Mervart, Bernese GPS Software Version 4.0, Astron. Inst., Univ. Bern, Bern, 1996.
Rothman, L. S, et al., The HITRAN Molecular Database: Editions of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transfer, 48, 469-507, 1992.
Rothman, L. S., et al., The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition, J. Quant. Spectrosc. Radiat. Transfer, 60, 665-710, 1998.
Russell, P. B., P. V. Hobbs, and L. L. Stowe, Aerosol properties and radiative effects in the United States mid-Atlantic haze plume: An overview of Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), J. Geophys. Res., 104, 2213-2222, 1999.
Schmid, B., and C. Wehrli, Comparison of Sun photometer calibration by Langley technique and standard lamp, Appl. Opt., 34, 4500-4512, 1995.
Schmid, B., K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, and J. Sekler, Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region, J. Geophys. Res., 101, 9345-9358, 1996.
Schmid, B., C. Mätzler, A. Heimo, and N. Kämpfer, Retrieval of optical depth and size distribution of tropospheric and stratospheric aerosols by means of Sun photometry, IEEE Trans. Geosci. Remote Sens., 35, 172-182, 1997.
Schmid, B., P. R. Spyak, S. F. Biggar, C. Wehrli, J. Sekler, T. Ingold, C. Mätzler, and N. Kämpfer, Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm, Appl. Opt., 37, 3923-3941, 1998.
Schmid, B., et al., Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements, Tellus, 52 Ser. B, 568-593, 2000.
Shiobara, M., J. D. Spinhirne, A. Uchiyama, and S. Asano, Optical depth measurements of aerosol, cloud, and water vapor using Sun photometers during FIRE cirrus IFO II, J. Appl. Meteorol., 35, 36-46, 1996.
Spyak, P. R., J. H. LaMarr, and K. J. Thome, Atmospheric absorption in laboratory measurements: A comparison between MOD-TRAN3 and measurements, Appl. Opt., 37, 5797-5805, 1998.
Staehelin, J., H. Schill, B. Högger, P. Viatte, G. Levrat, and A. Gamma, Total ozone observation by Sun photometry at Arosa, Switzerland, Opt. Eng., 34, 1977-1986, 1995.
Thome, K. J., B. M. Herman, and J. A. Reagan, Determination of precipitable water from solar transmission, J. Appl. Meteorol., 31, 157-165, 1992.
Thome, K. J., M. W. Smith, J. M. Palmer, and J. A. Reagan, Three-channel solar radiometer for the determination of atmospheric columnar water vapor, Appl. Opt., 33, 5811-5819, 1994.
Vesperini, M., F.-M. Bréon, and D. Tanré, Atmospheric water vapor content from spaceborne POLDER measurements, IEEE Trans. Geosci. Remote Sens., 37, 1613-1619, 1999.
World Meteorological Organization (WMO), Recent progress in Sun photometry, Determination of the aerosol optical depth, Environ. Pollut. Monit. and Res. Programme 43, WMO/TD 143, World Meteorol. Organ., Geneva, 1986.
World Meteorological Organization (WMO), Report of the WMO workshop on the measurement of atmospheric optical depth and turbidity, edited by B. Hicks, WMO/GAW 101, WMO/TD 659, World Meteorol. Organ., Geneva, 1993.