[en] Psychrophilic organisms have successfully colonized polar and alpine regions and are able to grow efficiently at sub-zero temperatures. At the enzymatic level, such organisms have to cope with the reduction of chemical reaction rates induced by low temperatures in order to maintain adequate metabolic fluxes. Thermal compensation in cold-adapted enzymes is reached through improved turnover number and catalytic efficiency. This optimization of the catalytic parameters can originate from a highly flexible structure which provides enhanced abilities to undergo conformational changes during catalysis. Thermal instability of cold-adapted enzymes is therefore regarded as a consequence of their conformational flexibility. A survey of the psychrophilic enzymes studied so far reveals only minor alterations of the primary structure when compared to mesophilic or thermophilic homologues. However, all known structural factors and weak interactions involved in protein stability are either reduced in number or modified in order to increase their flexibility.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Language :
English
Title :
Psychrophilic Enzymes: Molecular Basis of Cold Adaptation
Raymond J. A., Wilson P. and DeVries A. I., (1989) Inhibition of growth of non-basal planes in ice by fish antifreezes. Proc. Natl Acad. Sci. USA 86: 881-885
Jia Z., DeLuca C. I. Chao II. and Davies P. L. (1996) Structural basis for the binding of a globulat antifreeze protein to ice. Nature 384: 285-288
Duman J. G. and Olsen T. M. (1993) Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 30: 322-328
Sun X., Griffith M., Pasternak J. J. and Glick B. (1995) Low temperature growth, freezing survival and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomous putida GR 12-2. Can, J. Microbiol. 41: 776-784
Duman J. G., Wu D. W., Xu L., Tursman D. and Olsen T. M. (1991) Adaptations of insects to subzero temperatures. Quant. Rev. Biol. 66: 387-410
Franks F. (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press. Cambridge
Russell N. J. (1990) Cold adaptation of microorganisms, Phil. Trans. R. Soc. London. B326: 595-611
Russell N. J. (1992) Physiology and molecular biology of psychrophilic microorganisms. In: Molecular Biology and Biotechnology of Extremophiles. Herbert R. A. and Sharp R. J. (eds). pp. 203-224. Blackie, London
Friedmann E.H. (1982) Endolithic microorganisms in the antaretic cold desert. Science 215: 1045-1053
Hazel J. R. and Prosser C. L. (1974) Molecular mechanisms of temperature compensation in poikilotherms. Biol. Rev. 54: 620-677
Hochachka P. W. and Somero G. N. (1984) Biochemical Adaptations. Princeton University Press, Princeton
Storey K. B. and Storey J. M. (1988) Freeze tolerance in animals. Physiol. Rev. 68: 27-84
Jaenicke R. (1990) Proteins at low temperature. Phil. Trans. R. Soc. Lond. B326: 535-553
Somero G. N. (1995) Proteins and temperature, Annu. Rev. Physiol. 57: 43-68
Jones P. G. and Inouye M. (1994) The cold shock response-a hot topic, Mol. Microbiol. 11: 811-818
Ray M. K., Sitaramamma T., Ghandi S. and Shivagi S. (1994) Occurence and expression of CspA. a cold shock gene in antaretic psydirotrophic bacteria. FEMS Microbiol, Lett. 116: 55-60
Hebrand M., Dubois E., Polier P. and Labadie J. (1994) Effect of growth temperatures on the protein levels in a psychrotrophic bacterium Pseudomonas fragi. J. Bacteriol, 176: 4017-4024
Mayr B., Kaplan T., Lechner S. And Scherer S. (1996) Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSB 10201. J. Bacteriol, 178: 2916-2925
Berger F., Morellet N., Menu F. and Potier P. (1996) Cold shock and cold acelimation proteins in the psychrotrophic bacterium Anhrobactes blobiformis 8155. J. Bacteriol. 178: 2999-3007
Tanner J. J., Hecht R. M. and Krause K. L. (1996) Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate structure dehydrogenase at 2.5 Å resolution. Biochemistry 35: 2597-2609
Morita R. Y. (1975) Psychrophilic bacteria. Bacteriol. Rev. 39: 144-167
Hohman R. W. (1975) Optimum temperatures and temperature ranges for growth of snow algae. Aretic Alpine Res. 7: 13-24
Loppes R., Devos N., Willem S., Barthélemy P. and Matagne R. F. (1996) Effect of temperature on two enzymes from a psychrophilic Chloromonas (Chlorophyta). J. Physcol. 32: 276-278
Lee R. E. and Denlinger D. L. (1991) Insects at low temperatures. Chapman and Hall, New York
Eastman J. T. (1993) Antaretic fish biology, evolution in a unique environment, Academic Press, Sun Diego
Feller G., Narinx E., Arpigny J. L., Zekhnini Z., Swings J. and Gerday C. (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic anataretic bacteria. Appl. Microbiol, Biotechnol. 41: 477-479
Ruger H. J. (1988) Substrate dependent cold adaptations in some deep-sea sediment bacteria, System, Appl, Microbiol. 11: 90-93
Wiebe W. J., Sheldon W. M. and Pomeroy L., R. (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirement. Appl. Environ. Microbiol. 58: 359-364
Orange N. (1994) Growth temperature regulates the induction of β-lactamase in Psculomonas flaorescens through modification of the outer membrane permeation of a β-lactam inducing antibiotic, Microbiology 140: 3125-3130
Guillou C., Merieau A., Trebert B. and Guespin-Michel J. F. (1995) Growth temperature in involved in the regulation of extracellular lipase at two different levels in Pseudomonas fluorescens strain MF0, Biotechnol. Lett. 17: 377-382
Guillou C. And Guespin-Michel J. F. (1995) Evidence for two domains of temperature for the psychrotrophic bacterium Pseudomonas fluorescens MF0. App. Environ. Microbiol. 62: 3319-3324
De E., Orange N., Saint N., Guerillon J., De Mot R. and Molle G. (1997) Growth temperature dependence of channel size of the major outer membrane protein (Oprf) in psychrotrophic Pseudomanas fluorescens strains. Microbiology 143: 1029-1035
Sterner R., Kleemann G. R., Szadkowski H., Lustig A., Hennig M. and Kirschner K. (1996) Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Protein Sci. 5: 2000-2008
Low P. S., Bada J. L. and Somero G. N. (1973) Temperature adaptations of enzymes: roles of the free energy, the enthalpy and the entropy of activation. Proc. Natl Acad, Sci. USA 70: 430-432
Londesborough J. (1980) The causes of sharply bent or discontinuous Arrhenius plots for enzyme-catalysed reactions. Eur. J. Biochem, 105: 211-215
Clarke A. (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr. Mar, Biol. Annu. Rev. 21: 341-453
Mohr P. W. and Krawiec S. (1980) Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. J. Gen. Microbiol. 121: 311-317
Crawford D. L. and Powers D. A. (1989) Molecular basis of evolutionary adaptation at the lactate dehydrogenasc-B locus in the fish Fundulus heteroclitus. Proc. Natl Acad. Sci. USA 86: 9365-9369
Crawford D. L. and Powers D. A. (1992) Evolutionary adaptation to different thermal environments via transcriptional regulation. Mol. Biol. Evol. 9: 806-813
Genicot S., Feller G. and Gerday C. (1988) Trypsin from antaretic fish (Paranotothenia magellanoica Forster) as compared with trout (Salmo gairdneri) trypsin. Comp. Biochem. Physiol. 90B: 601-609
Simpson B. K. and Haard N. F. (1984) Purification and characterization of trypsin from the Greenland cod (Gadusogac). 1. Kinetic and thermodynamic characteristics. Can. J. Biochem. Cell. Biol. 62: 894-900
Asgeirsson B. and Bjarnason J. B. (1993) Properties of elastase from Atlantic cod. a cold-adapted proteinase. Biochim. Biophys. Acta 1164: 91-100
Asgeirsson B. and Bjarnason J. B. (1991) Structural and kinetic properties of chymotrypsin from atlantic cod (Gadusmorhua). Comparison with bovine chymotrypsin. Comp. Biochem. Physiol. 99B: 327-335
Feller G., Lonhienne T., Deroanne C., Libioulle C., Van Becumen J. and Gerday C. (1992) Purification, characterization, and nucleotide sequence of the thermolabile a-amylase from the antarctic psychrotroph. Alteromonas haloplanetis A23. J. Biol. Chem. 267: 5217-5221
Feller G., Payan F., Theys F., Qian M., Haser R. and Gerday C. (1994) Stability and structural analysis of a-amylase from the antaretic psychrophile Alteromonas haloplanctis A23. Eur. J. Biochem. 222: 441-447
Fersht A. (1985) Enzyme structure and mechanism. W.H. Freeman and Company, New York
Burbaum J. J., Raines R. T., Albery W. J. and Knowles J. R. (1989) Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry 28: 9293-9305
Feller G., Zekhnini Z., Lamotte-Brasseur J. and Gerday C. (1997) Enzymes from cold-adapted microorganisms. The class C β-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Fur. J. Biochem. 244: 186-191
Fisher J., Belasco J. G., Khosla S. and Knowles J. R. (1980) β-lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry 19: 2895-2901
Aghajari N., Feller G., Gerday C. and Haser R. (1996) Crystallization and preliminary X-ray diffraction studies of α-amylase from the antarctic psychrophile Alteromonas haloplanetis A23. Protein Sci. 5: 2128-2129
Smalas A. O., Heimstad E. S., Hordvik A., Willassen N. P. and Male R. (1994) Cold adaptation of enzymes: structural comparison between salmon and bovine trypsins. Proteins: Struct. Fund. Genet. 20: 149-166
Berglund G. L., Willassen N. P., Hordvik A. and Smalas A. O. (1995) Structure of native pancreatic elastase from North Atlantic salmon at 1.61 A resolution. Acta Cryst. D51: 925-937
Mosimann S., Meleshko R. and James M. N. G. (1995) A critical assessment of comparative molecular modeling of tertiary structures of proteins. Proteins Stuct. Fund. Genet. 23: 301-317
Sali A. (1995) Modelling mutations and homologous proteins. Curr. Opin. Biotechnol. 6: 437-451
Qian M., Haser R., Buisson G., Duée E. and Payan F. (1994) The active center of a mammalian a-amylase with a carbohydrate inhibitor refined to 2.2 Å resolution. Biochemistry 33: 6284-6294
Kobori H., Sullivan C. W. and Shizuya H. (1984) Heat-labile alkaline phosphalase from antarctic bacteria: rapid 5′ endlabelling of nucleic acids. Proc. Natl Acad. Sci. USA 81: 6691-6695
Perutz M. F. and Raidt H. (1975) Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature 255: 256-259
Heimstad E. S., Hansen L. K. and Smalas A. O. (1995) Comparative molecular dynamics simulation studies of salmon and bovine trypsins in aqueous solution. Protein Eng. 8: 379-388
Davail S., Feller G., Narinx E. and Gerday C. (1994) Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile ubtilisin from the antaretic psychrophile Bacillus TA41. J. Biol. Chem. 269: 17448-17453
Rentier-Delrue F., Mande S. C., Moyens S., Terpstra P., Mainfroid V., Goraj K. et al. (1993) Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. J. Mol. Biol. 229: 85-93
Arpigny J. L., Lamotte J. and Gerday C. (1997) Molecular adaptation to cold of an antaretic bacterial lipase. J. Mol. Catal. B(3): 29-35
Genicot S., Rentier-Delrue F., Edwards D., VanBeeumen J. and Gerday C. (1996) Trypsin and trypsinogen from antarctic fish: molecular basis of cold adaptation. Biochim. Biophys. Acta 1298: 45-57
Aittaleb M., Hubner R., Lamotte-Brasseur J. and Gerday C. (1997) Cold adaptation parameters derived from cDNA sequencing and molecular modelling of elastase from antaretic fish Notothenia neglecta. Protein Eng. 10: 475-477
Feller G., Narinx E., Arpigny J. L., Aittaleb M., Baise F., Genicot S. el al. (1996) Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202
Feller G., Arpigny J. L., Narinx. E. and Gerday C. (1997) Molecular adaptations of enzymes from psychrophilic organisms. Comp. Biochem. Physiol. 118A: (in press)
Yip K. S. P., Stillman T. J., Britton K. L., Artymiuk P. J., Baker P. J., Sedelnikova S. E. et al. (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3: 1147-1158
Borders C. L., Broadwater J. A., Bekeny P. A., Salmon J. A., Lee A. S., Eldridge A. M. et al. (1994) A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3: 541-548
Creighton T. E. (1991) Stability of folded conformations. Curr. Opin. Struct. Biol. 1: 5-16
Gudmundsdottir E., Spilliaert R., Yang Q., Craik C. S., Bjarnason J. B. and Gudmundsdottir A. (1996) Isolation and characterization of two cDNAs from atlantic cod encoding two distinct psychrophilic elastases. Comp. Biochem. Physiol. 113B: 795-801
Gudmundsdottir A., Oskarsson S., Eakin A. F., Craik C. S. and Bjarnason J. B. (1994) Atlantic cod cDNA encoding a psychrophilic chymotrypsinogen. Biochim. Biophys. Acta 1219: 211-214
Burley S. K. and Petsko G. A. (1988) Weakly polar interactions in proteins. Adv. Protein Chem. 39: 125-189
Shoemaker K. R., Kim P. S., York F. J., Stewart J. M. and Baldwin R.L. (1987) Tests of the helix dipole model for the stabilisation of x-helices. Nature 326: 563-567
Schiffer C. A. and Dötsch V. (1996) The role of protein-solvent interactions in protein unfolding. Curr. Opin. Biotechnol. 7: 428-432
Privalov P. L. and Gill S. J. (1988) Stability of protein structure and hydrophobic interaction. Adv. Protein Chem. 39: 191-234
Feller G., Thiry M. and Gerday C. (1991) Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381-388
Alvarez M., Rentier-Delrue F., Goraj K. and Mainfroid V. (1997) Vibrio marinus TIM: a cold adapted enzyme. Arch. Physiol. Biochem. 105: B17-B42
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.