[en] Psychrophilic microorganisms, hosts of permanently cold habitats, produce enzymes which are adapted to work at low temperatures. When compared to their mesophilic counterparts, these enzymes display a higher catalytic efficiency over a temperature range of roughly 0-30 degrees C and a high thermosensitivity. The molecular characteristics of cold enzymes originating from Antarctic bacteria have been approached through protein modelling and X-ray crystallography. The deduced three-dimensional structures of cold alpha-amylase, beta-lactamase, lipase and subtilisin have been compared to their mesophilic homologs. It appears that the molecular adaptation resides in a weakening of the intramolecular interactions, and in some cases in an increase of the interaction with the solvent, leading to more flexible molecular edifices capable of performing catalysis at a lower energy cost.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Aittaleb, Mohamed
Arpigny, Jean Louis
Baise, Etienne ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Chessa, Jean-Pierre
Garsoux, Geneviève
Petrescu, Ioan
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
N.J. Russell, Psychrotrophy and adaptations to low temperatures microbial membrane lipids, in: Proc. 19th Int. Congr. Refrigeration, Workshop on Refrigeration and Microbiology, Health, Food and Drinks, Flowers, 1995, pp. 359-365.
Jones P.G., Inouye M. The cold shock response - a hot topic. Mol. Microbiol. 11:1994;811-818.
Nakashima K., Kanamaru K., Mizuno T., Horikoshi K. A novel member of the CSpA family of genes that is induced by cold shock in E. coli. J. Bacteriol. 178:1996;2994-2997.
Mayr B., Kaplan T., Lechner S., Scherer S. Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSB 10201. J. Bacteriol. 178:1996;2916-2925.
Berger F., Morellet N., Menu F., Potier P. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J. Bacteriol. 178:1996;2999-3007.
Duman J.G., Olsen T.M. Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology. 30:1993;322-328.
Sun X., Griffith M., Pasternak J.J., Glick R. Low temperature growth, freezing survival and production of antifreeze protein by the plant growth providing rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41:1995;776-784.
Johnston I.A., Walesby N.J. Molecular mechanisms of temperature adaptation in fish myofibrillar adenosine triphosphatases. J. Comp. Physiol. 119:1977;195-206.
Feller G., Payan F., Theys F., Qian M., Haser R., Gerday Ch. Stability and structural analysis of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Eur. J. Biochem. 222:1994;441-447.
Privalov P.L. Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem. 36:1982;1-104.
Dolgikh D.A., Gilmanshin R.I., Braznikov E.V., Bychkova V.E., Semisotnov G.V., Venyaminov S.Y., Ptitsyn O. α-Lactalbumin: compact state with fluctuating tertiary structure. FEBS Lett. 136:1981;311-315.
Ohgushi M., Wada A. Molten globule state: a compact form of globular proteins with mobile side chains. FEBS Lett. 164:1983;21-24.
Semisotnov G.V., Rodionova N.A., Kubyshenko V.P., Ebert B., Blanck J., Ptitsyn O.B. Sequential mechanism of refolding of carbonic anhydrase B. FEBS Lett. 224:1987;9-13.
Harding M.M., Williams D.H., Woolfson D.N. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry. 30:1991;3120-3128.
P.L. Privalov, Physical basis of the stability of the folded conformations of proteins, in: T.E. Creighton (Ed.), Protein Folding, W.H. Freeman, New York, 1992, pp. 83-116.
P.W. Hochachka, G.N. Somero, Temperature adaptation in Biochemical Adaptation, Princeton University Press, Princeton, 1984, pp. 355-449.
Cowan D.A. Enzymes from thermophilic archaebacteria: current and future applications in biotechnology. Biochem. Soc. Symp. 58:1992;149-169.
Vihinen M. Relationship of protein flexibility to thermostability. Protein Eng. 1:1987;477-480.
Shoichet B.K., Baase W.A., Kuroki R., Matthews B.W. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA. 92:1995;542-549.
E. Narinx, Adaptations moléculaires des enzymes aux basses températures: Application aux subtilisines de bactéries antarctiques, PhD thesis, Université de Liège, 1995.
Feller G., Narinx E., Arpigny J.L., Aittaleb M., Baise E., Genicot S., Gerday Ch. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18:1996;189-202.
Karplus P.A., Schulz G.E. Prediction of chain flexibility in proteins. Naturwissenschaften. 72:1985;212-213.
Van Stokkum I.H., Linsdell H., Hadden J.M., Haris P.I., Chapman D., Bloemendal M. Temperature-induced changes in protein structures studied by Fourier transform infrared spectroscopy and global analysis. Biochemistry. 34:1995;10508-10518.
Remerowski M.L., Reperwens H.A.M., Hilbers C.W., Van de Ven F.J. Backbone dynamics of the 269 residue protease savinase determined from 15 N-NMR relaxation measurements. Eur. J. Biochem. 235:1996;629-640.
Aghajari N., Feller G., Gerday Ch., Haser R. Crystallization and preliminary X-ray diffraction studies of α-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23. Prot. Sci. 5:1996;2128-2129.
Privalov P.L., Griko Y.V., Venyaminov Y. Cold denaturation of myoglobin. J. Mol. Biol. 190:1986;487-498.
Wong K.B., Freund S.M.V., Fersht A.R. Cold denaturation of barstar: 1H, 15N and 13C NMR assignment and characterization of residual structure. J. Mol. Biol. 259:1996;805-818.
Vckorski V., Schlatter D., Zuber H. Structure and function of L-lactate dehydrogenase from thermophilic, mesophilic and psychrophilic bacteria. Biol. Chem. Hoppe-Seyler. 371:1990;103-110.
Rentier-Delrue F., Mande S.C., Moyens S., Terpstra P., Mainfroid V., Goraj K., Lion M., Hol W.G., Martial J. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequence. J. Mol. Biol. 229:1993;85-93.
Detrich H.W., Johnson K.A., Marchese-Ragona S.P. Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry. 28:1989;10085-10093.
Kobori H., Sullivan C.W., Shizuya H. Heat labile alkaline phosphatase from Antarctic bacteria: rapid 5′ end-labeling of nucleic acids. Proc. Natl. Acad. Sci. USA. 81:1984;6691-6695.
Owusu R.K., Makhzoum A., Knapp J. The thermodynamic stability of lipases and proteases from psychrotrophic bacteria. Food. Chem. 39:1991;187-195.
Margesin R., Schinner F. Characterization of a metalloprotease from psychrophilic Xanthomonas maltophilia. FEMS Microbiol. Lett. 79:1991;257-262.
Feller G., Lonhienne T., Deroanne C., Libioulle C., Van Beeumen J., Gerday Ch. Purification, characterization and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotrop Alteromonas haloplanctis A23. J. Biol. Chem. 267:1992;5217-5221.
Sunna A., Moracci M., Rossi M., Antranikian G. Glycosyl hydrolases from hyper thermophiles. Extremophiles. 1:1997;2-13.
Borders C.L., Brodwater J.A., Bekeny P.A., Salmon J.E., Lee A.S., Eldridge A.M., Pett V.B. A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci. 3:1994;541-548.
Feller G., Le Bussy O., Houssier C., Gerday Ch. Structural and functional aspects of chloride binding to Alteromonas haloplanctis α-amylase. J. Biol. Chem. 271:1996;23836-23841.
Feller G., Zekhnini Z., Lamotte-Brasseur J., Gerday Ch. Enzymes from cold-adapted microorganisms. The class C β-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur. J. Biochem. 244:1997;186-191.
Lobkovsky E., Moews P.C., Liu H., Zhao H., Frère J.M., Knox J.R. Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of cepholosporinase from the amp c gene of Enterobacter cloacae Pgq and comparison with a class A penicillase. Proc. Natl. Acad. Sci. USA. 90:1993;11257-11267.
Schiffer C.A., Dötsch V. The role of protein-solvent interactions in protein unfolding. Curr. Opin. Biotech. 7:1996;428-432.
Ikai A. Thermostability and aliphatic index of globular proteins. J. Biochem. (Tokyo). 88:1980;1895-1898.
Cornette J.L., Cease K.B., Margalit H., Sparge J.L., Berzofsky J.A., Delisi C. Hydrophobicity scales and computational techniques for detecting amphipathic structure in proteins. J. Mol. Biol. 195:1987;659-685.
Feller G., Thiry M., Arpigny J.L., Mergeay M., Gerday Ch. Lipases from psychrotrophic Antarctic bacteria. FEMS Microbiol. Lett. 66:1990;239-244.
Feller G., Thiry M., Gerday Ch. Nucleotide sequence of the lipase gene lip2 from the Antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell. Biol. 10:1991;381-388.
Arpigny J.L., Feller G., Gerday Ch. Corrigendum to cloning, sequence and structural features of a lipase from the Antarctic facultative psychrophile Psychrobacter immobilis B10 Bioch. Biochim. Biophys. Acta. 1771:1995;331-333.
Arpigny J.L., Lamotte J., Gerday Ch. Molecular adaptation to cold of an Antarctic bacteria lipase. J. Mol. Catal. B Enzymatic. 3:1997;29-35.
Ollis D.L., Cheach E., Cygler M., Dijstra M., Frolow S., Franken M., Harel S., Remington S., Silvan I., Shrag J., Sussman J., Verschraren K., Goldman A. The α/β hydrolase fold. Protein Eng. 5:1992;197-211.
Davail S., Feller G., Narinx E., Gerday Ch. Cold adaptation of proteins. Purification, characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA. J. Biol. Chem. 269:1994;17448-17453.
Jackson S.E., Fersht A.R. Contribution of long-range electrostatic interactions to the stabilization of the catalytic transition state of the serine protease subtilisin BPN. Biochemistry. 32:1993;13909-13916.
O.P. Ptitsyn, The molten globule state in: T.E. Creighton (Ed.), Protein Folding, W.H. Freeman, New York, 1992, pp. 243-300.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.