Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-147.
Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984, 247(3 Pt. 1):C125-C142.
Runckel D.N., Swanson J.R. Effect of dimethyl sulfoxide on serum osmolality. Clin Chem 1980, 26:1745-1747.
Brobyn R.D. The human toxicology of dimethyl sulfoxide. Ann N Y Acad Sci 1975, 243:497-506.
Kligman A.M. Topical pharmacology and toxicology of dimethyl sulfoxide. JAMA 1965, 193:796-804.
Schallmoser K., Strunk D. Generation of a pool of human platelet lysate and efficient use in cell culture. Methods Mol Biol 2013, 946:349-362.
Brenneman D.E. Neuroprotection: a comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Peptides 2007, 28:1720-1726.
Ohtaki H., Nakamachi T., Dohi K., Aizawa Y., Takaki A., Hodoyama K., et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci U S A 2006, 103:7488-7493.
Gasz B., Racz B., Roth E., Borsiczky B., Tamas A., Boronkai A., et al. PACAP inhibits oxidative stress-induced activation of MAP kinase-dependent apoptotic pathway in cultured cardiomyocytes. Ann N Y Acad Sci 2006, 1070:293-297.
Gutierrez-Canas I., Rodriguez-Henche N., Bolanos O., Carmena M.J., Prieto J.C., Juarranz M.G. VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. Br J Pharmacol 2003, 139:1050-1058.
Falluel-Morel A., Aubert N., Vaudry D., Basille M., Fontaine M., Fournier A., et al. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. JNeurochem 2004, 91:1231-1243.
Kim S.J., Winter K., Nian C., Tsuneoka M., Koda Y., McIntosh C.H. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. JBiol Chem 2005, 280:22297-22307.
Kim S.J., Nian C., Widenmaier S., McIntosh C.H. Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol Cell Biol 2008, 28:1644-1656.
Rodrigues J.P., Paraguassu-Braga F.H., Carvalho L., Abdelhay E., Bouzas L.F., Porto L.C. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology 2008, 56:144-151.
Ohtake S., Wang Y.J. Trehalose: current use and future applications. JPharm Sci 2011, 100:2020-2053.
Liu M., Zhang M., Ye H., Lin S., Yang Y., Wang L., et al. Multiple toxicity studies of trehalose in mice by intragastric administration. Food Chem 2013, 136:485-490.
Adler S., Pellizzer C., Paparella M., Hartung T., Bremer S. The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro 2006, 20:265-271.
Di G., Wang J., Liu M., Wu C.T., Han Y., Duan H. Development and evaluation of a trehalose-contained solution formula to preserve hUC-MSCs at 4 degrees C. JCell Physiol 2012, 227:879-884.
Chen T., Acker J.P., Eroglu A., Cheley S., Bayley H., Fowler A., et al. Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology 2001, 43:168-181.
Crowe J.H. Trehalose as a "chemical chaperone": fact and fantasy. Adv Exp Med Biol 2007, 594:143-158.
Liu Y., Xu X., Ma X., Martin-Rendon E., Watt S., Cui Z. Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol Prog 2010, 26:1635-1643.
Zeddou M., Briquet A., Relic B., Josse C., Malaise M.G., Gothot A., et al. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 2010, 34:693-701.
Fekete N., Gadelorge M., Furst D., Maurer C., Dausend J., Fleury-Cappellesso S., et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 2012, 14:540-554.
Ramasamy R., Tong C.K., Yip W.K., Vellasamy S., Tan B.C., Seow H.F. Basic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cells. Cell Prolif 2012, 45:132-139.
Vaudry D., Falluel-Morel A., Bourgault S., Basille M., Burel D., Wurtz O., et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009, 61:283-357.
Racz B., Gasz B., Gallyas F., Kiss P., Tamas A., Szanto Z., et al. PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. Regul Pept 2008, 145:105-115.
Castorina A., Tiralongo A., Giunta S., Carnazza M.L., Rasi G., D'Agata V. PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res 2008, 1241:29-35.
Widenmaier S.B., Ao Z., Kim S.J., Warnock G., McIntosh C.H. Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. JBiol Chem 2009, 284:30372-30382.