[en] Synthesis of biologically active compounds is of paramount importance to the biomedical sciences for the development of novel therapeutic agents. Such substances often feature various types of unique and complex structures, which make them challenging targets for synthetic efforts. Their total synthesis offers the chance to implement the use of newly developed, efficient and highly selective synthetic procedures and/or strategies in a complex environment. In this respect, thanks to the development of increasingly efficient molybdenum and ruthenium catalysts, olefin metathesis is now an integral part of modern synthetic methods. This review article will highlight with selected examples from the recent literature assets and limitations of the olefin metathesis reaction in the synthesis of biologically active compounds.
Disciplines :
Chemistry
Author, co-author :
Dassonneville, Benjamin ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie macromoléculaire et catalyse organique
Delaude, Lionel ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organométallique et catalyse homogène
Demonceau, Albert ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie macromoléculaire et catalyse organique
Dragutan, Ileana; Acad Romana, Inst Organ Chem, Bucharest 060023, Romania.
Dragutan, Valerian; Acad Romana, Inst Organ Chem, Bucharest 060023, Romania.
For accounts of the development of the metathesis reaction, which include details of early applications, see:
Chauvin, Y. Olefin metathesis: The early days (Nobel lecture). Angew. Chem. Int. Ed. 2006, 45, 3741-3747.
Schrock, R. R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew. Chem. Int. Ed. 2006, 45, 3748-3759.
Grubbs, R. H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed. 2006, 45, 3760-3765.
Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003.
Hoveyda, A. H.; Zhugralin, A. R. The remarkable metalcatalysed olefin metathesis reaction. Nature 2007, 450, 243-251.
Schrodi, Y.; Pederson, R. L. Evolution and applications of secondgeneration ruthenium olefin metathesis catalysts. Aldrichimica Acta 2007, 40, 45-52.
Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746-1787.
See also: Borguet, Y.; Zaragoza, G.; Demonceau, A.; Delaude, L. Assessing the ligand properties of 1,3-dimesitylbenzimidazol-2-ylidene in ruthenium-catalyzed olefin metathesis. Dalton Trans. 2013, 42, 7287-7296.
Hoveyda, A. H.; Schrock, R. R. Catalytic asymmetric olefin metathesis. Chem. Eur. J. 2001, 7, 945-950.
Schrock, R. R.; Hoveyda, A. H. Molybdenum and tungsten imido alkylidene complexes as efficient olefinmetathesis catalysts. Angew. Chem. Int. Ed. 2003, 42, 4592-4633.
Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. A series of welldefined metathesis catalysts-Synthesis of [RuCl2(=CHR')(PR3)2] and its reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041.
Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Increased ring closing metathesis activity of ruthenium-based olefin metathesis catalysts coordinated with imidazolin-2-ylidene ligands. Tetrahedron Lett. 1999, 40, 2247-2250.
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 1, 953-956.
Trnka, T. M.; Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: An organometallic success story. Acc. Chem. Res. 2001, 34, 18-29.
For a comprehensive review on metathesis reactions in total synthesis, see: Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 2005, 44, 4490-4527. See also:
Gaich, T.; Mulzer, J. Recent applications of olefin ring-closing metathesis (RCM) in the synthesis of biologically important alkaloids, terpenoids, polyketides and other secondary metabolites. Curr. Top. Med. Chem. 2005, 5, 1473-1494.
Van de Weghe, P.; Eustache, J. The application of olefin metathesis to the synthesis of biologically active macrocyclic agents. Curr. Top. Med. Chem. 2005, 5, 1495-1519.
Majumdar, K. C.; Rahaman, H.; Roy, B. Synthesis of macrocyclic compounds by ring closing metathesis. Curr. Org. Chem. 2007, 11, 1339-1365.
dos Santos, A. R.; Kaiser, C. R.; Férézou, J.-P. Metátese de olefinas aplicada ao fechamento de anéis: Uma ferramenta poderosa para a síntese de macrociclos naturais, Ring-closing olefin metathesis: A powerful tool for the synthesis of natural macrocycles. Quim. Nova 2008, 31, 655-668.
Binder, J. B.; Raines, R. T. Olefin metathesis for chemical biology. Curr. Opin. Chem. Biol. 2008, 12, 767-773.
Bicchielli, D.; Borguet, Y.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Jossifov, C.; Kalinova, R.; Nicks, F.; Sauvage, X. Recent applications of alkene metathesis in fine chemical synthesis, In Green Metathesis Chemistry-Great Challenges in Synthesis, Catalysis and Nanotechnology (Eds: V. Dragutan, A. Demonceau, I. Dragutan, E. Sh. Finkelshtein), Springer, Dordrecht, 2010, pp. 207-274.
Cossy, J.; Arseniyadis, S.; Meyer, C. Eds. Metathesis in Natural Product Synthesis, Wiley-VCH: Weinheim, Germany, 2010.
Prunet, J. Progress in metathesis through natural product synthesis. Eur. J. Org. Chem. 2011, 3634-3647.
Richard, J.-A.; Ng, S. Y.; Chen, D. Y.-K. Metathesis-based synthesis of complex bioactives, In Modern Tools for the Synthesis of Complex Bioactive Molecules (Eds: J. Cossy, S. Arseniyadis), Wiley, 2012, pp. 155-188.
For recent reviews on the utility of the ring-closing metathesis reaction for macrocycle construction, see:
Felpin, F.-X.; Lebreton, J. Recent advances in the total synthesis of piperidine and pyrrolidine natural alkaloids with ring-closing metathesis as a key step. Eur. J. Org. Chem. 2003, 3693-3712.
Deiters, A.; Martin, S. F. Synthesis of oxygen-and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev. 2004, 104, 2199-2238.
Donohoe, T. J.; Orr, A. J.; Bingham, M. Ring-closing metathesis as a basis for the construction of aromatic compounds. Angew. Chem. Int. Ed. 2006, 45, 2664-2670.
Gradillas, A.; Pérez-Castells, J. Macrocyclization by ringclosing metathesis in the total synthesis of natural products: Reaction conditions and limitations. Angew. Chem. Int. Ed. 2006, 45, 6086-6101.
Clark, J. S. Construction of fused polycyclic ethers by strategies involving ringclosing metathesis. Chem. Commun. 2006, 3571-3581.
Chattopadhyay, S. K.; Karmakar, S.; Biswas, T.; Majumdar, K. C.; Rahaman, H.; Roy, B. Formation of medium-ring heterocycles by diene and enyne metathesis. Tetrahedron 2007, 63, 3919-3952.
Villar, H.; Frings, M.; Bolm, C. Ring closing enyne metathesis: A powerful tool for the synthesis of heterocycles. Chem. Soc. Rev. 2007, 36, 55-66.
Majumdar, K. C.; Muhuri, S.; Islam, R. U.; Chattopadhyay, B. Synthesis of five-and six-membered heterocyclic compounds by the application of the metathesis reactions. Heterocycles 2009, 78, 1109-1169.
Majumdar, K. C.; Chattopadhyay, B.; Ray, K. Formation of five-and six-membered heterocyclic compounds by ring-closing metathesis. Curr. Org. Synth. 2010, 7, 153-176.
Takao, K.-I.; Tadano, K.-I. Synthesis of nitrogen-and oxygen-bridged seven-to ten-membered carbocycles using metathesis reactions. Heterocycles 2010, 81, 1603-1629.
Hassan, H. M. A. Recent applications of ring-closing metathesis in the synthesis of lactams and macrolactams. Chem. Commun. 2010, 46, 9100-9106.
Merino, P.; Tejero, T.; Greco, G.; Marca, E.; Delso, I.; Gómez-SanJuan, A.; Matute, R. Recent advances on the synthesis of piperidines through ruthenium-catalyzed ring-closing metathesis (RCM) reactions. Heterocycles 2011, 84, 75-100.
Busacca, C. A.; Fandrick, D. R.; Song, J. J.; Senanayake, C. H. The growing impact of catalysis in the pharmaceutical industry. Adv. Synth. Catal. 2011, 353, 1825-1864.
Parenty, A.; Moreau, X.; Niel, G.; Campagne, J.-M. Update 1 of: Macrolactonizations in the total synthesis of natural products. Chem. Rev. 2013, 113, PR1-PR40.
For recent reviews on the utility of the cross-metathesis reaction, see:
Connon, S. J.; Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed. 2003, 42, 1900-1923.
Wojtkielewicz, A. Application of cross metathesis in diene and polyene synthesis. Curr. Org. Synth. 2013, 10, 43-66.
Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex. J. Am. Chem. Soc. 1993, 115, 9856-9857.
Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and applications of RuCl2(=CHR')(PR3)2: The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc. 1996, 118, 100-110.
Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc. 2000, 122, 8168-8179.
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett. 1999, 1, 953-956.
Chatterjee, A. K.; Grubbs, R. H. Synthesis of trisubstituted alkenes via olefin cross-metathesis. Org. Lett. 1999, 1, 1751-1753.
Romero, P. E.; Piers, W. E.; McDonald, R. Rapidly initiating ruthenium olefinmetathesis catalysts. Angew. Chem. Int. Ed. 2004, 43, 6161-6165.
Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Highly efficient ruthenium catalysts for the formation of tetrasubstituted olefins via ring-closing metathesis. Org. Lett. 2007, 9, 1589-1592.
Chung, C. K.; Grubbs, R. H. Olefin metathesis catalyst: Stabilization effect of backbone substitutions of N-heterocyclic carbene. Org. Lett. 2008, 10, 2693-2696.
Kuhn, K. M.; Bourg, J.-B.; Chung, C. K.; Virgil, S. C.; Grubbs, R. H. Effects of NHC-backbone substitution on efficiency in ruthenium-based olefin metathesis. J. Am. Chem. Soc. 2009, 131, 5313-5320.
Costabile, C.; Mariconda, A.; Cavallo, L.; Longo, P.; Bertolasi, V.; Ragone, F.; Grisi, F. The pivotal role of symmetry in the rutheniumcatalyzed ring-closing metathesis of olefins. Chem. Eur. J. 2011, 17, 8618-8629.
Paek, S.-M. Synthesis of tetrasubstituted alkenes via metathesis. Molecules 2012, 17, 3348-3358.
Dragutan, V.; Dragutan, I. Ruthenium vinylidene complexes. Syntheses and applications in metathesis catalysis. Platinum Metals Rev. 2004, 48, 148-153.
Dragutan, V.; Dragutan, I.; Verpoort, F. Ruthenium indenylidene complexes. Metathesis catalysts with enhanced activity. Platinum Metals Rev. 2005, 49, 33-40.
Dragutan, V.; Dragutan, I.; Drozdzak, R.; Verpoort, F. Synthetic approach to ruthenium vinylidene complexes and their applications in metathesis catalysis. Rev. Roum. Chim. 2007, 52, 931-939.
Bieniek, M.; Michrowska, A.; Usanov, D. L.; Grela, K. In an attempt to provide a user's guide to the galaxy of benzylidene, alkoxybenzylidene, and indenylidene ruthenium olefin metathesis catalysts. Chem. Eur. J. 2008, 14, 806-818.
Boeda, F.; Clavier, H.; Nolan, S. P. Ruthenium-indenylidene complexes: Powerful tools for metathesis transformations. Chem. Commun. 2008, 2726-2740.
Dragutan, V.; Dragutan, I.; Delaude, L.; Demonceau, A. Exploring new achievements in olefin metathesis catalysts: Part 1-Highlights on N-heterocyclic carbene ruthenium complexes. Chemistry Today 2009, 27, 9-12.
Dragutan, I.; Dragutan, V.; Delaude, L.; Demonceau, A. Exploring new achievements in olefin metathesis catalysts: Part 2-Compelling innovations in ruthenium complexes. Chemistry Today 2009, 27, 13-16.
Demonceau, A.; Noels, A. F.; Saive, E.; Hubert, A. J. Rutheniumcatalyzed ring-opening metathesis polymerization of cycloolefins initiated by diazoesters. J. Mol. Catal. 1992, 76, 123-132.
Stumpf, A. W.; Saive, E.; Demonceau, A.; Noels, A. F. Ruthenium-based catalysts for the ring opening metathesis polymerisation of low-strain cyclic olefins and of functionalised derivatives of norbornene and cyclooctene. J. Chem. Soc., Chem. Commun. 1995, 1127-1128.
Demonceau, A.; Stumpf, A. W.; Saive, E.; Noels, A. F. Novel ruthenium-based catalyst systems for the ring-opening metathesis polymerization of low-strain cyclic olefins. Macromolecules 1997, 30, 3127-3136.
Delaude, L.; Demonceau, A.; Noels, A. F. Highly stereoselective ruthenium catalyzed ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes and their 7-oxa analogues. Macromolecules 1999, 32, 2091-2103.
Jan, D.; Delaude, L.; Simal, F.; Demonceau, A.; Noels, A. F. Synthesis and evaluation of new RuCl2(p-cymene)(ER2R') and (h1:h6-phosphino-arene)RuCl2 complexes as ring-opening metathesis polymerization catalysts. J. Organomet. Chem. 2000, 606, 55-64.
Delaude, L.; Demonceau, A.; Noels, A. F. Probing the stereoselectivity of the ruthenium-catalyzed ring-opening metathesis polymerization of norbornene and norbornadiene diesters. Macromolecules 2003, 36, 1446-1456.
Delaude, L.; Demonceau, A.; Noels, A. F. Visible light induced ringopening metathesis polymerisation of cyclooctene. Chem. Commun. 2001, 986-987.
Delaude, L.; Szypa, M.; Demonceau, A.; Noels, A. F. New in situ generated ruthenium catalysts bearing N-heterocyclic carbene ligands for the ring-opening metathesis polymerization of cyclooctene. Adv. Synth. Catal. 2002, 344, 749-756.
Baran, J.; Bogdanska, I.; Jan, D.; Delaude, L.; Demonceau, A.; Noels, A. F. Synthesis and ring-opening metathesis polymerization of eight-membered unsaturated lactams and related monomers. J. Mol. Catal. A: Chem. 2002, 190, 109-116.
Delaude, L.; Demonceau, A.; Noels, A. F. Synthesis and application of new N-heterocyclic carbene ruthenium complexes in catalysis: A case study. Curr. Org. Chem. 2006, 10, 203-215.
Tudose, A.; Demonceau, A.; Delaude, L. Imidazol(in)ium-2-carboxylates as N-heterocyclic carbene precursors in ruthenium-arene catalysts for olefin metathesis and cyclopropanation. J. Organomet. Chem. 2006, 691, 5356-5365.
Dragutan, I.; Dragutan, V.; Delaude, L.; Demonceau, A.; Noels, A. F. N-heterocyclic carbene ruthenium complexes: Synthesis and catalytic properties. Rev. Roum. Chim. 2007, 52, 1013-1025.
Maj, A. M.; Delaude, L.; Demonceau, A.; Noels, A. F. Synthesis of N-heterocyclic carbene precursors bearing biphenyl units and their use in ruthenium-catalyzed ring-opening metathesis polymerization. J. Organomet. Chem. 2007, 692, 3048-3056.
Dragutan, V.; Dragutan, I.; Delaude, L.; Demonceau, A. NHC-Ru complexes-Friendly catalytic tools for manifold chemical transformations. Coord. Chem. Rev. 2007, 251, 765-794.
Delaude, L.; Sauvage, X.; Demonceau, A.; Wouters, J. Synthesis and catalytic evaluation of ruthenium-arene complexes generated using imidazol(in)ium-2-carboxylates and dithiocarboxylates. Organometallics 2009, 28, 4056-4064.
Sauvage, X.; Demonceau, A.; Delaude, L. Imidazol(in)ium-2-carboxylates as Nheterocyclic carbene ligand precursors for ruthenium metathesis initiators. Macromol. Symp. 2010, 293, 28-32.
Hans, M.; Willem, Q.; Wouters, J.; Demonceau, A.; Delaude, L. Synthesis and catalytic evaluation of ruthenium-arene complexes bearing imidazol(in)ium-2-thiocarboxylate ligands. Organometallics 2011, 30, 6133-6142.
Delaude, L.; Demonceau, A. Retracing the evolution of monometallic ruthenium-arene catalysts for C-C bond formation. Dalton Trans. 2012, 41, 9257-9268.
Sauvage, X.; Borguet, Y.; Noels, A. F.; Delaude, L.; Demonceau, A. Homobimetallic ruthenium-N-heterocyclic carbene complexes: Synthesis, characterization, and catalytic applications. Adv. Synth. Catal. 2007, 349, 255-265.
Sauvage, X.; Borguet, Y.; Zaragoza, G.; Demonceau, A.; Delaude, L. Homobimetallic ruthenium vinylidene, allenylidene, and indenylidene complexes: Synthesis, characterization, and catalytic studies. Adv. Synth. Catal. 2009, 351, 441-455.
Sauvage, X.; Borguet, Y.; Demonceau, A.; Delaude, L. Homobimetallic ruthenium-ethylene, vinylidene, allenylidene, and indenylidene catalysts for olefin metathesis. Macromol. Symp. 2010, 293, 24-27.
Borguet, Y.; Sauvage, X.; Zaragoza, G.; Demonceau, A.; Delaude, L. Homobimetallic ruthenium-arene complexes bearing vinylidene ligands: Synthesis, characterization, and catalytic application in olefin metathesis. Organometallics 2010, 29, 6675-6686.
Sauvage, X.; Zaragoza, G.; Demonceau, A.; Delaude, L. Mixed isobutylphobane/Nheterocyclic carbene ruthenium-indenylidene complexes: Synthesis and catalytic evaluation in olefin metathesis reactions. Adv. Synth. Catal. 2010, 352, 1934-1948.
Borguet, Y.; Sauvage, X.; Zaragoza, G.; Demonceau, A.; Delaude, L. Synthesis and catalytic evaluation in olefin metathesis of a secondgeneration homobimetallic ruthenium-arene complex bearing a vinylidene ligand. Organometallics 2011, 30, 2730-2738.
Li, W.; Schlecker, A.; Ma, D. Total synthesis of antimicrobial and antitumor cyclic depsipeptides. Chem. Commun. 2010, 46, 5403-5420.
Waldmann, H.; Hu, T.-S.; Renner, S.; Menninger, S.; Tannert, R.; Oda, T.; Arndt, H.-D. Total synthesis of chondramide C and its binding mode to F-actin. Angew. Chem. Int. Ed. 2008, 47, 6473-6477.
Tannert, R.; Milroy, L.-G.; Ellinger, B.; Hu, T.-S.; Arndt, H.-D.; Waldmann, H. Synthesis and structure-activity correlation of natural-product inspired cyclodepsipeptides stabilizing F-actin. J. Am. Chem. Soc. 2010, 132, 3063-3077.
Terracciano, S.; Bruno, I.; D'Amico, E.; Bifulco, G.; Zampella, A.; Sepe, V.; Smith, C. D.; Riccio, R. Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting jaspamide. Bioorg. Med. Chem. 2008, 16, 6580-6588.
Xu, Y.-Y.; Liu, C.; Liu, Z.-P. Advances in the total synthesis of cyclodepsipeptide (+)-jasplakinolide (jaspamide) and its analogs. Curr. Org. Synth. 2013, 10, 67-89.
Green, A. P.; Hardy, S.; Lee, A. T. L.; Thomas, E. J. Approaches to the total synthesis of biologically active natural products: Studies directed towards bryostatins. Phytochem. Rev. 2010, 9, 501-513.
Martin, D. B. C.; Vanderwal, C. D. Concise synthesis of (-)-nakadomarin A. Angew. Chem. Int. Ed. 2010, 49, 2830-2832.
Nilson, M. G.; Funk, R. L. Total synthesis of (-)-nakadomarin A. Org. Lett. 2010, 12, 4912-4915.
Kyle, A. F.; Jakubec, P.; Cockfield, D. M.; Cleator, E.; Skidmore, J.; Dixon, D. J. Total synthesis of (-)-nakadomarin A. Chem. Commun. 2011, 47, 10037-10039.
Jakubec, P.; Kyle, A. F.; Calleja, J.; Dixon D. J. Total synthesis of (-)-nakadomarin A: Alkyne ring-closing metathesis. Tetrahedron Lett. 2011, 52, 6094-6097.
Luo, S.-P.; Guo, L.-D.; Gao, L.-H.; Li, S.; Huang, P.-Q. Toward the total synthesis of haliclonin A: Construction of a tricyclic substructure. Chem. Eur. J. 2013, 19, 87-91.
Kita, M.; Watanabe, H.; Ishitsuka, T.; Mogi, Y.; Kigoshi, H. Synthetic studies of mycalolide B, an actin-depolymerizing marine macrolide: Construction of the tris-oxazole macrolactone using ring-closing metathesis. Tetrahedron Lett. 2010, 51, 4882-4885.
Kita, M.; Oka, H.; Usui, A.; Ishitsuka, T.; Mogi, Y.; Watanabe, H.; Kigoshi, H. Synthesis and biological activities of the tris-oxazole macrolactone analogs of mycalolides. Tetrahedron 2012, 68, 8753-8760.
See also: Hoffman, T. J.; Kolleth, A.; Rigby, J. H.; Arseniyadis, S.; Cossy, J. Stereoselective synthesis of the C1-C11 and C12-C34 fragments of mycalolide A. Org. Lett. 2010, 12, 3348-3351.
Ghosh, A. K.; Cheng, X. Enantioselective total synthesis of (-)-zampanolide, a potent microtubule-stabilizing agent. Org. Lett. 2011, 13, 4108-4111.
Wilson, M. R.; Taylor, R. E. Toward an enantioselective synthesis of (-)-zampanolide: Preparation of the C9-C20 region. Org. Lett. 2012, 14, 3408-3411.
Ghosh, A. K.; Cheng, X.; Bai, R.; Hamel, E. Total synthesis of potent antitumor macrolide (-)-zampanolide: An oxidative intramolecular cyclization-based strategy. Eur. J. Org. Chem. 2012, 4130-4139.
Trost, B. M.; Yang, H.; Dong, G. Total syntheses of bryostatins: Synthesis of two ring-expanded bryostatin analogues and the development of a newgeneration strategy to access the C7-C27 fragment. Chem. Eur. J. 2011, 17, 9789-9805.
Anquetin, G.; Rawe, S. L.; McMahon, K.; Murphy, E. P.; Murphy, P. V. Synthesis of novel migrastatin and dorrigocin A analogues from D-glucal. Chem. Eur. J. 2008, 14, 1592-1600.
Dias, L. C.; Finelli, F. G.; Conegero, L. S.; Krogh, R.; Andricopulo, A. D. Synthesis of the macrolactone of migrastatin and analogues with potent cell-migration inhibitory activity. Eur. J. Org. Chem. 2010, 6748-6759.
Dias, L. C.; Monteiro, G. C.; Amarante, G. W.; Conegero, L. S.; Finelli, F. G. Stereoselective synthesis of analogs of the macrolactone of isomigrastatin. Tetrahedron Lett. 2012, 53, 707-709.
Rosen, E. L.; Sung, D. H.; Chen, Z.; Lynch, V. M.; Bielawski, C. W. Olefin metathesis catalysts containing acyclic diaminocarbenes. Organometallics 2010, 29, 250-256.
Teo, P.; Grubbs, R. H. Facile synthesis of efficient and selective ruthenium olefin metathesis catalysts with sulfonate and phosphate ligands. Organometallics 2010, 29, 6045-6050.
Kotha, S.; Dipak, M. K. Strategies and tactics in olefin metathesis. Tetrahedron 2012, 68, 397-421.
Endo, K.; Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 2011, 133, 8525-8527.
Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. Z-Selective homodimerization of terminal olefins with a ruthenium metathesis catalyst. J. Am. Chem. Soc. 2011, 133, 9686-9688.
Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. Improved ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 2012, 134, 693-699.
Marx, V. M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. Stereoselective access to Z and E macrocycles by ruthenium-catalyzed Z selective ring-closing metathesis and ethenolysis. J. Am. Chem. Soc. 2013, 135, 94-97.
Rosebrugh, L. E.; Herbert, M. B.; Marx, V. M.; Keitz, B. K.; Grubbs, R. H. Highly active ruthenium metathesis catalysts exhibiting unprecedented activity and Z-selectivity. J. Am. Chem. Soc. 2013, 135, 1276-1279.
Meek, S. J.; O'Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Catalytic Z-selective olefin cross-metathesis for natural product synthesis. Nature 2011, 471, 461-466.
Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. Highly Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 2009, 131, 16630-16631.
Marinescu, S. C.; Schrock, R. R.; Muller, P.; Takase, M. K.; Hoveyda, A. H. Room-temperature Z-selective homocoupling of aolefins by tungsten catalysts. Organometallics 2011, 30, 1780-1782.
Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Synthesis of macrocyclic natural products by catalystcontrolled stereoselective ring-closing metathesis. Nature 2011, 479, 88-93.
Wang, C.; Yu, M.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Efficient and selective formation of macrocyclic disubstituted Z alkenes by ring-closing metathesis (RCM) reactions catalyzed by Mo-or W-based monoaryloxide pyrrolide (MAP) complexes: Applications to total syntheses of epilachnene, yuzu lactone, ambrettolide, epothilone C, and nakadomarin A. Chem. Eur. J. 2013, 19, 2726-2740.
Herbert, M. B.; Marx, V. M.; Pederson, R. L.; Grubbs, R. H. Concise syntheses of insect pheromones using Z-selective cross-metathesis. Angew. Chem. Int. Ed. 2013, 52, 310-314.
For recent reviews, see: Ghalit, N.; Rijkers, D. T. S.; Liskamp, R. M. J. Alkene-and alkyne-bridged mimics of nisin as potential peptide-based antibiotics. J. Mol. Catal. A: Chem. 2006, 254, 68-77.
Brik, A. Metathesis in peptides and peptidomimetics. Adv. Synth. Catal. 2008, 350, 1161-1175.
Pérez de Vega, M. J.; García-Aranda, M. I.; González-Muñiz, R. A role for ring-closing metathesis in medicinal chemistry: Mimicking secondary architectures in bioactive peptides. Med. Res. Rev. 2011, 31, 677-715.
Liskamp, R. M. J.; Rijkers, D. T. S.; Kruijtzer, J. A. W.; Kemmink, J. Peptides and proteins as a continuing exciting source of inspiration for peptidomimetics. ChemBioChem 2011, 12, 1626-1653.
Giuliani, A.; Rinaldi, A. C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci. 2011, 68, 2255-2266.
For recent reviews, see: Kotha, S.; Meshram, M.; Tiwari, A. Advanced approach to polycyclics by a synergistic combination of enyne metathesis and Diels-Alder reaction. Chem. Soc. Rev. 2009, 38, 2065-2092.
Nolan, S. P.; Clavier, H. Chemoselective olefin metathesis transformations mediated by ruthenium complexes. Chem. Soc. Rev. 2010, 39, 3305-3316.
Dragutan, I.; Dragutan, V.; Demonceau, A.; Delaude, L. Enabling access to diverse bioactive molecules through enyne metathesis concepts. Curr. Org. Chem. 2013, 17(22), 2678-2720.
Tolomelli, A.; Gentilucci, L.; Mosconi, E.; Viola, A.; Paradisi, E. A straightforward route to enantiopure 2-substituted-3,4-dehydro-b-proline via ring closing metathesis. Amino Acids 2011, 41, 575-586.
Carreras, J.; Avenoza, A.; Busto, J. H.; Peregrina, J. M. Ring-rearrangement metathesis of 1-substituted 7-azanorbornenes as an entry to 1-azaspiro[4.5]decane systems. J. Org. Chem. 2011, 76, 3381-3391.
Kotha, S.; Bansal, D.; Singh, K.; Banerjee, S. Synthesis of a new fluorescent macrocyclic a-amino acid derivative via tandem cross-enyne/ring-closing metathesis cascade catalyzed by ruthenium based catalysts. J. Organomet. Chem. 2011, 696, 1856-1860.
Kotha, S.; Goyal, D.; Thota, N.; Srinivas, V. Synthesis of modified phenylalanine peptides by cross enyne metathesis and a Diels-Alder reaction as key steps. Eur. J. Org. Chem. 2012, 1843-1850.
Sellstedt, M.; Prasad, G. K.; Krishnan, K. S.; Almqvist, F. Directed diversity-oriented synthesis. Ringfused 5-to 10-membered rings from a common peptidomimetic 2-pyridone precursor. Tetrahedron Lett. 2012, 53, 6022-6024.
Llinàs-Brunet, M.; Bailey, M. D.; Bolger, G.; Brochu, C.; Faucher, A.-M.; Ferland, J. M.; Garneau, M.; Ghiro, E.; Gorys, V.; Grand-Maître, C.; Halmos, T.; Lapeyre-Paquette, N.; Liard, F.; Poirier, M.; Rhéaume, M.; Tsantrizos, Y. S.; Lamarre, D. Structure-activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN 2061. J. Med. Chem. 2004, 47, 1605-1608.
Tsantrizos, Y. S.; Ferland, J.-M.; McClory, A.; Poirier, M.; Farina, V.; Yee, N. K.; Wang, X.-J.; Haddad, N.; Wei, X.; Xu, J.; Zhang, L. Olefin ringclosing metathesis as a powerful tool in drug discovery and development-potent macrocyclic inhibitors of the hepatitis C virus NS3 protease. J. Organomet. Chem. 2006, 691, 5163-5171.
Yee, N. K.; Farina, V.; Houpis, I. N.; Haddad, N.; Frutos, R. P.; Gallou, F.; Wang, X.-J.; Wei, X.; Simpson, R. D.; Feng, X.; Fuchs, V.; Xu, Y.; Tan, J.; Zhang, L.; Xu, J.; Smith-Keenan, L. L.; Vitous, J.; Ridges, M. D.; Spinelli, E. M.; Johnson, M.; Donsbach, K.; Nicola, T.; Brenner, M.; Winter, E.; Kreye, P.; Samstag, W. Efficient largescale synthesis of BILN 2061, a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. J. Org. Chem. 2006, 71, 7133-7145.
Bieniek, M.; Bujok, R.; Stepowska, H.; Jacobi, A.; Hagenkötter, R.; Arlt, D.; Jarzembska, K.; Makal, A.; Wozniak, K.; Grela, K. New air-stable ruthenium olefin metathesis precatalysts derived from bisphenol S. J. Organomet. Chem. 2006, 691, 5289-5297.
Shu, C.; Zeng, X.; Hao, M.-H.; Wei, X.; Yee, N. K.; Busacca, C. A.; Han, Z.; Farina, V.; Senanayake, C. H. RCM macrocyclization made practical: An efficient synthesis of HCV protease inhibitor BILN 2061. Org. Lett. 2008, 10, 1303-1306.
Nicola, T.; Brenner, M.; Donsbach, K.; Kreye, P. First scale-up to production scale of a ring closing metathesis reaction forming a 15-membered macrocycle as a precursor of an active pharmaceutical ingredient. Org. Process Res. Dev. 2005, 9, 513-515.
Farina, V.; Shu, C.; Zeng, X.; Wei, X.; Han, Z.; Yee, N. K.; Senanayake, C. H. Second-generation process for the HCV protease inhibitor BILN 2061: A greener approach to Ru-catalyzed ring-closing metathesis. Org. Process Res. Dev. 2009, 13, 250-254.
Velázquez, F.; Venkatraman, S.; Wu, W.; Blackman, M.; Prongay, A.; Girijavallabhan, V.; Shih, N.-Y.; Njoroge, F. G. Application of ring-closing metathesis for the synthesis of macrocyclic peptidomimetics as inhibitors of HCV NS3 protease. Org. Lett. 2007, 9, 3061-3064.
McCauley, J. A.; Rudd, M. T.; Nguyen, K. T.; McIntyre, C. J.; Romano, J. J.; Bush, K. J.; Varga, S. L.; Ross, C. W., III; Carroll, S. S.; DiMuzio, J.; Stahlhut, M. W.; Olsen, D. B.; Lyle, T. A.; Vacca, J. P.; Liverton, N. J. Bismacrocyclic inhibitors of hepatitis C NS3/4a protease. Angew. Chem. Int. Ed. 2008, 47, 9104-9107.
Di Francesco, M. E.; Dessole, G.; Nizi, E.; Pace, P.; Koch, U.; Fiore, F.; Pesci, S.; Di Muzio, J.; Monteagudo, E.; Rowley, M.; Summa, V. Novel macrocyclic inhibitors of hepatitis C NS3/4A protease featuring a 2-amino-1,3-thiazole as a P4 carbamate replacement. J. Med. Chem. 2009, 52, 7014-7028.
Pompei, M.; Di Francesco, M. E.; Pesci, S.; Koch, U.; Vignetti, S. E.; Veneziano, M.; Pace, P.; Summa, V. Novel P2-P4 macrocyclic inhibitors of HCV NS3/4A protease by P3 succinamide fragment depeptidization strategy. Bioorg. Med. Chem. Lett. 2010, 20, 168-174.
Rudd, M. T.; McCauley, J. A.; Butcher, J. W.; Romano, J. J.; McIntyre, C. J.; Nguyen, K. T.; Gilbert, K. F.; Bush, K. J.; Holloway, M. K.; Swestock, J.; Wan, B.-L.; Carroll, S. S.; DiMuzio, J. M.; Graham, D. J.; Ludmerer, S. W.; Stahlhut, M. W.; Fandozzi, C. M.; Trainor, N.; Olsen, D. B.; Vacca, J. P.; Liverton, N. J. Discovery of MK-1220: A macrocyclic inhibitor of hepatitis C virus NS3/4A protease with improved preclinical plasma exposure. ACS Med. Chem. Lett. 2011, 2, 207-212.
Li, X.; Zhang, S.; Zhang, Y.-K.; Liu, Y.; Ding, C. Z.; Zhou, Y.; Plattner, J. J.; Baker, S. J.; Bu, W.; Liu, L.; Kazmierski, W. M.; Duan, M.; Grimes, R. M.; Wright, L. L.; Smith, G. K.; Jarvest, R. L.; Ji, J.-J.; Cooper, J. P.; Tallant, M. D.; Crosby, R. M.; Creech, K.; Ni, Z.-J.; Zou, W.; Wright, J. Synthesis and SAR of acyclic HCV NS3 protease inhibitors with novel P4-benzoxaborole moieties. Bioorg. Med. Chem. Lett. 2011, 21, 2048-2054.
Harper, S.; McCauley, J. A.; Rudd, M. T.; Ferrara, M.; DiFilippo, M.; Crescenzi, B.; Koch, U.; Petrocchi, A.; Holloway, M. K.; Butcher, J. W.; Romano, J. J.; Bush, K. J.; Gilbert, K. F.; McIntyre, C. J.; Nguyen, K. T.; Nizi, E.; Carroll, S. S.; Ludmerer, S. W.; Burlein, C.; DiMuzio, J. M.; Graham, D. J.; McHale, C. M.; Stahlhut, M. W.; Olsen, D. B.; Monteagudo, E.; Cianetti, S.; Giuliano, C.; Pucci, V.; Trainor, N.; Fandozzi, C. M.; Rowley, M.; Coleman, P. J.; Vacca, J. P.; Summa, V.; Liverton, N. J. Discovery of MK-5172, a macrocyclic hepatitis C virus NS3/4a protease inhibitor. ACS Med. Chem. Lett. 2012, 3, 332-336.
Wei, X.; Shu, C.; Haddad, N.; Zeng, X.; Patel, N. D.; Tan, Z.; Liu, J.; Lee, H.; Shen, S.; Campbell, S.; Varsolona, R. J.; Busacca, C. A.; Hossain, A.; Yee, N. K.; Senanayake, C. H. A highly convergent and efficient synthesis of a macrocyclic hepatitis C virus protease inhibitor BI 201302. Org. Lett. 2013, 15, 1016-1019.
Bäck, M.; Johansson, P.-O.; Wångsell, F.; Thorstensson, F.; Kvarnström, I.; Ayesa, S.; Wähling, H.; Pelcman, M.; Jansson, K.; Lindström, S.; Wallberg, H.; Classon, B.; Rydergård, C.; Vrang, L.; Hamelink, E.; Hallberg, A.; Rosenquist, Å.; Samuelsson, B. Novel potent macrocyclic inhibitors of the hepatitis C virus NS3 protease: Use of cyclopentane and cyclopentene P2-motifs. Bioorg. Med. Chem. 2007, 15, 7184-7202.
Raboisson, P.; de Kock, H.; Rosenquist, Å.; Nilsson, M.; Salvador-Oden, L.; Lin, T.-I; Roue, N.; Ivanov, V.; Wähling, H.; Wickström, K.; Hamelink, E.; Edlund, M.; Vrang, L.; Vendeville, S.; Van de Vreken, W.; McGowan, D.; Tahri, A.; Hu, L.; Boutton, C.; Lenz, O.; Delouvroy, F.; Pille, G.; Surleraux, D.; Wigerinck, P.; Samuelsson, B.; Simmen, K. Structure-activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350. Bioorg. Med. Chem. Lett. 2008, 18, 4853-4858.
Seiwert, S. D.; Andrews, S. W.; Jiang, Y.; Serebryany, V.; Tan, H.; Kossen, K.; Rajagopalan, P. T. R.; Misialek, S.; Stevens, S. K.; Stoycheva, A., Hong, J.; Lim, S. R.; Qin, X.; Rieger, R.; Condroski, K. R.; Zhang, H.; Do, M. G.; Lemieux, C.; Hingorani, G. P.; Hartley, D. P.; Josey, J.A.; Pan, L.; Beigelman, L.; Blatt, L.M. Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob. Agents Chemother. 2008, 52, 4432-4441.
Liverton, N. J.; Carroll, S. S.; DiMuzio, J.; Fandozzi, C.; Graham, D. J.; Hazuda, D.; Holloway, M. K.; Ludmerer, S. W.; McCauley, J. A.; McIntyre, C. J.; Olsen, D. B.; Rudd, M. T.; Stahlhut, M.; Vacca, J. P. MK-7009, a potent and selective inhibitor of hepatitis C virus NS3/4A protease. Antimicrob. Agents Chemother. 2010, 54, 305-311.
McCauley, J. A.; McIntyre, C. J.; Rudd, M. T.; Nguyen, K. T.; Romano, J. J.; Butcher, J. W.; Gilbert, K. F.; Bush, K. J.; Holloway, M. K.; Swestock, J.; Wan, B.-L.; Carroll, S. S.; DiMuzio, J. M.; Graham, D. J.; Ludmerer, S. W.; Mao, S.-S.; Stahlhut, M. W.; Fandozzi, C. M.; Trainor, N.; Olsen, D. B.; Vacca, J. P.; Liverton, N. J. Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4A protease inhibitor. J. Med. Chem. 2010, 53, 2443-2463.
Song, Z. J.; Tellers, D. M.; Journet, M.; Kuethe, J. T.; Lieberman, D.; Humphrey, G.; Zhang, F.; Peng, Z.; Waters, M. S.; Zewge, D.; Nolting, A.; Zhao, D.; Reamer, R. A.; Dormer, P. G.; Belyk, K. M.; Davies, I. W.; Devine, P. N.; Tschaen, D. M. Synthesis of vaniprevir (MK-7009): Lactamization to prepare a 22-membered macrocycle. J. Org. Chem. 2011, 76, 7804-7815.
Song, Z. J.; Tellers, D. M.; Journet, M.; Kuethe, J. T.; Lieberman, D.; Humphrey, G.; Zhang, F.; Peng, Z.; Waters, M. S.; Zewge, D.; Nolting, A.; Zhao, D.; Reamer, R. A.; Dormer, P. G.; Belyk, K. M.; Davies, I. W.; Devine, P. N.; Tschaen, D. M. Synthesis of vaniprevir (MK-7009): Lactamization to prepare a 22-membered macrocycle. J. Org. Chem. 2011, 76, 9553.
Chen, C.-Y. Application of ring-closing metathesis strategy to the synthesis of vaniprevir (MK-7009), a 20-membered macrocyclic HCV protease inhibitor. Top. Organomet. Chem. 2012, 42, 135-150.
Kong, J.; Chen, C.-Y.; Balsells-Padros, J.; Cao, Y.; Dunn, R. F.; Dolman, S. J.; Janey, J.; Li, H.; Zacuto, M. J. Synthesis of the HCV protease inhibitor vaniprevir (MK-7009) using ring-closing metathesis strategy. J. Org. Chem. 2012, 77, 3820-3828.
Abell, A. D.; Jones, M. A.; Coxon, J. M.; Morton, J. D.; Aitken, S. G.; McNabb, S. B.; Lee, H. Y.-Y.; Mehrtens, J. M.; Alexander, N. A.; Stuart, B. G.; Neffe, A. T.; Bickerstaffe, R. Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew. Chem. Int. Ed. 2009, 48, 1455-1458.
Abell, A. D.; Alexander, N. A.; Aitken, S. G.; Chen, H.; Coxon, J. M.; Jones, M. A.; McNabb, S. B.; Muscroft-Taylor, A. Synthesis of macrocyclic b-strand templates by ring closing metathesis. J. Org. Chem. 2009, 74, 4354-4356.
Stuart, B. G.; Coxon, J. M.; Morton, J. D.; Abell, A. D.; McDonald, D. Q.; Aitken, S. G.; Jones, M. A.; Bickerstaffe, R. Molecular modeling: A search for a calpain inhibitor as a new treatment for cataractogenesis. J. Med. Chem. 2011, 54, 7503-7522.
Andersson, H.; Demaegdt, H.; Johnsson, A.; Vauquelin, G.; Lindeberg, G.; Hallberg, M.; Erdélyi, M.; Karlén, A.; Hallberg, A. Potent macrocyclic inhibitors of insulin-regulated aminopeptidase (IRAP) by olefin ring-closing metathesis. J. Med. Chem. 2011, 54, 3779-3792.
Saupe, S. M.; Steinmetzer, T. A new strategy for the development of highly potent and selective plasmin inhibitors. J. Med. Chem. 2012, 55, 1171-1180.
Baron, A.; Verdié, P.; Martinez, J.; Lamaty, F. cis-Apa: A practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage. J. Org. Chem. 2011, 76, 766-772.
For reviews on microwave-assisted olefin metathesis, see: Coquerel, Y.; Rodriguez, J. Microwave-assisted olefin metathesis. Eur. J. Org. Chem. 2008, 1125-1132.
Nicks, F.; Borguet, Y.; Sauvage, X.; Bicchielli, D.; Delfosse, S.; Delaude, L.; Demonceau, A. Microwave-assisted olefin metathesis, In Green Metathesis Chemistry-Great Challenges in Synthesis, Catalysis and Nanotechnology (Eds: V. Dragutan, A. Demonceau, I. Dragutan, E. Sh. Finkelshtein), Springer, Dordrecht, 2010, pp. 327-358. For recent applications of microwave-assisted olefin metathesis in the synthesis of peptidomimetics, see:
Hossain, M. A.; Rosengren, K. J.; Zhang, S.; Bathgate, R. A. D.; Tregear, G. W.; van Lierop, B. J.; Robinson, A. J.; Wade, J. D. Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity. Org. Biomol. Chem. 2009, 7, 1547-1553.
van Lierop, B. J.; Whelan, A. N.; Andrikopoulos, S.; Mulder, R. J.; Jackson, W. R.; Robinson, A. J. Methods for enhancing ring closing metathesis yield in peptides: Synthesis of a dicarba human growth hormone fragment. Int. J. Pept. Res. Ther. 2010, 16, 133-144.
Patgiri, A.; Menzenski, M. Z.; Mahon, A. B.; Arora, P. S. Solid-phase synthesis of short a-helices stabilized by the hydrogen bond surrogate approach. Nat. Protoc. 2010, 5, 1857-1865.
Zhang, S.; Hughes, R. A.; Bathgate, R. A. D.; Shabanpoor, F.; Hossain, M. A.; Lin, F.; van Lierop, B.; Robinson, A. J.; Wade, J. D. Role of the intra-Achain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2. Peptides 2010, 31, 1730-1736.
Hossain, M. A.; Guilhaudis, L.; Sonnevend, A.; Attoub, S.; van Lierop, B. J.; Robinson, A. J.; Wade, J. D.; Conlon, J. M. Synthesis, conformational analysis and biological properties of a dicarba derivative of the antimicrobial peptide, brevinin-1BYa. Eur. Biophys. J. 2011, 40, 555-564.
Kowalczyk, R.; Brimble, M. A.; Callon, K. E.; Watson, M.; Cornish, J. How to blast osteoblasts? Novel dicarba analogues of amylin-(1-8) to treat osteoporosis. Bioorg. Med. Chem. 2012, 20, 6011-6018.
Zaminer, J.; Brockmann, C.; Huy, P.; Opitz, R.; Reuter, C.; Beyermann, M.; Freund, C.; Müller, M.; Oschkinat, H.; Kühne, R.; Schmalz, H.-G. Addressing protein-protein interactions with small molecules: A Pro-Pro dipeptide mimic with a PPII helix conformation as a module for the synthesis of PRD-binding ligands. Angew. Chem. Int. Ed. 2010, 49, 7111-7115.
Reuter, C.; Huy, P.; Neudörfl, J.-M.; Kühne, R.; Schmalz, H.-G. Exercises in pyrrolidine chemistry: Gram scale synthesis of a Pro-Pro dipeptide mimetic with a polyproline type II helix conformation. Chem. Eur. J. 2011, 17, 12037-12044.
Afarinkia, K.; Bahar, A. Recent advances in the chemistry of azapyranose sugars. Tetrahedron: Asymmetry 2005, 16, 1239-1287.
Borges de Melo, E.; da Silveira Gomes, A.; Carvalho, I. a-and b-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 2006, 62, 10277-10302.
Compain, P.; Martin, O. R., Eds. Iminosugars: From Synthesis to Therapeutic Applications; Wiley-VCH: Weinheim, Germany, 2007.
Asano, N. Sugar-mimicking glycosidase inhibitors: Bioactivity and application. Cell. Mol. Life Sci. 2009, 66, 1479-1492.
Compain, P.; Chagnault, V.; Martin, O. R. Tactics and strategies for the synthesis of iminosugar C-glycosides: A review. Tetrahedron: Asymmetry 2009, 20, 672-711.
Cipolla, L.; La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.; Shaikh, N.; Russo, L.; Nicotra, F. Carbohydrate mimetics and scaffolds: Sweet spots in medicinal chemistry. Fut. Med. Chem. 2010, 2, 587-599.
Nash, R. J.; Kato, A.; Yu, C.-Y.; Fleet, G. W. J. Iminosugars as therapeutic agents: Recent advances and promising trends. Fut. Med. Chem. 2011, 3, 1513-1521.
Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R. Iminosugars past, present and future: Medicines for tomorrow. Drug Discovery Today 2011, 16, 107-118.
Horne, G.; Wilson, F. X. Therapeutic applications of iminosugars: Current perspectives and future opportunities. Progr. Med. Chem. 2011, 50, 135-176.
Alonzi, D. S.; Butters, T. D. Therapeutic targets for inhibitors of glycosylation. Chimia 2011, 65, 35-39.
Silva, J. G.; Carvalho, I. New insights into aminoglycoside antibiotics and derivatives. Curr. Med. Chem. 2007, 14, 1101-1119.
Diaz, L.; Delgado, A. Medicinal chemistry of aminocyclitols. Curr. Med. Chem. 2010, 17, 2393-2418.
Chen, X.; Zheng, Y.; Shen, Y. Voglibose (Basen®, AO-128), one of the most important a-glucosidase inhibitors. Curr. Med. Chem. 2006, 13, 109-116.
Negishi, M.; Shimomura, K.; Pro, P.; Shimomura, Y.; Mori, M. Alpha glucosidase inhibitor voglibose can prevent pioglitazone-induced body weight gain in Type 2 diabetic patients. Br. J. Clin. Pharmacol. 2008, 66, 318-319.
Pearson, M. S. M.; Mathé-Allainmat, M.; Fargeas, V.; Lebreton, J. Recent advances in the total synthesis of piperidine azasugars. Eur. J. Org. Chem. 2005, 2159-2191.
Kumar, A.; Rawal, G. K.; Vankar, Y. D. Synthesis of hybrids of Dglucose and D-galactose with 1-deoxynojirimycin analogues using ringclosing metathesis. Tetrahedron 2008, 64, 2379-2390.
Saikia, P. P.; Baishya, G.; Goswami, A.; Barua, N. C. An efficient reduction protocol for the synthesis of b-hydroxycarbamates from b-nitro alcohols in one pot: A facile synthesis of (-)-b-conhydrine. Tetrahedron Lett. 2008, 49, 6508-6511.
Venkataiah, M.; Fadnavis, N. W. A novel stereoselective synthesis of (-)-bconhydrine from (R)-2,3-O-cyclohexylidine glyceraldehyde. Tetrahedron 2009, 65, 6950-6952.
Shaikh, T. M.; Sudalai, A. A concise enantioselective synthesis of (+)-lentiginosine. Tetrahedron: Asymmetry 2009, 20, 2287-2292.
Kamal, A.; Vangala, S. R.; Reddy, N. V. S.; Reddy, V. S. Stereoselective total synthesis of (+)-b-conhydrine from D-mannitol. Tetrahedron: Asymmetry 2009, 20, 2589-2593.
Kim, I. S.; Li, Q. R.; Dong, G. R.; Kim, Y. C.; Hong, Y. J.; Lee, M.; Chi, K.-W.; Oh, J. S.; Jung, Y. H. A facile synthesis of lentiginosine analogues based on a highly regio-and diastereoselective allylic amination using chlorosulfonyl isocyanate. Eur. J. Org. Chem. 2010, 1569-1573.
Gupta, P.; Pal, A. P. J.; Reddy, Y. S.; Vankar, Y. D. Synthesis of aminocyclitols and trihydroxylated indolizidinone from a Dmannitol-derived common building block. Eur. J. Org. Chem. 2011, 1166-1175.
Samojlowicz, C.; Borré, E.; Mauduit, M.; Grela, K. Microwaveassisted ruthenium-catalysed olefin metathesis in fluorinated aromatic hydrocarbons: A beneficial combination. Adv. Synth. Catal. 2011, 353, 1993-2002.
Kamal, A.; Vangala, S. R. An expedient total synthesis of optically active piperidine and indolizidine alkaloids (-)-b-conhydrine and (-)-lentiginosine. Tetrahedron 2011, 67, 1341-1347.
Díez, J. A.; Gálvez, J. A.; Díaz-de-Villegas, M. D.; Badorrey, R.; Bartholomew, B.; Nash, R. J. Stereoselective synthesis and biological evaluation of D-fagomine, D-3-epi-fagomine and D-3,4-epi-fagomine analogs from D-glyceraldehyde acetonide as a common building block. Org. Biomol. Chem. 2012, 10, 9278-9286.
Doddi, V. R.; Vankar, Y. D. Synthesis of pyrrolidine-based imino sugars as glycosidase inhibitors. Eur. J. Org. Chem. 2007, 5583-5589.
Borré, E.; Caijo, F.; Crévisy, C.; Mauduit, M. New library of aminosulfonyl-tagged Hoveyda-Grubbs type complexes: Synthesis, kinetic studies and activity in olefin metathesis transformations. Beilstein J. Org. Chem. 2010, 6, 1159-1166.
Mahajan, V.; Gais, H.-J. Ring-closing metathesis of sulfoximinesubstituted N-tethered trienes: Modular asymmetric synthesis of mediumring nitrogen heterocycles. Chem. Eur. J. 2011, 17, 6187-6195.
Zhang, L.-L.; Zhang, W.-Z.; Ren, X.; Tan, X.-Y.; Lu, X.-B. Synthesis of oxacyclic dienes via ring-closing enyne metathesis: Difference in construction of eightmembered rings. Tetrahedron Lett. 2012, 53, 3389-3392.
Lebrun, S.; Couture, A.; Deniau, E.; Grandclaudon, P. Asymmetric synthesis of the optically active piperidine alkaloid (+)-b-conhydrine. Tetrahedron: Asymmetry 2008, 19, 1245-1249.
Doddi, V. R.; Kumar, A.; Vankar, Y. D. Stereoselective synthesis of muco-quercitol, (+)-gala-quercitol and 5-amino-5-deoxy-D-vibo-quercitol from D-mannitol. Tetrahedron 2008, 64, 9117-9122.
Kumari, N.; Vankar, Y. D. Synthesis and glycosidaseinhibitory activity of novel polyhydroxylated quinolizidines derived from Dglycals. Org. Biomol. Chem. 2009, 7, 2104-2109.
Laventine, D. L.; Cullis, P. M.; García, M. D.; Jenkins, P. R. Stereoselective synthesis of sevenmembered lactams and lactones on a carbohydrate scaffold using ringclosing metathesis. Tetrahedron Lett. 2009, 50, 3657-3660.
Pal, A. P. J.; Gupta, P.; Reddy, Y. S.; Vankar, Y. D. Synthesis of fused oxa-aza spiro sugars from D-glucose-derived ¬-lactone as glycosidase inhibitors. Eur. J. Org. Chem. 2010, 6957-6966.
Borsini, E.; Broggini, G.; Colombo, F.; Khansaa, M.; Fasana, A.; Galli, S.; Passarella, D.; Riva, E.; Riva, S. Enantiopure 2-piperidylacetaldehyde as a useful building block in the diversity-oriented synthesis of polycyclic piperidine derivatives. Tetrahedron: Asymmetry 2011, 22, 264-269.
Boddaert, T.; Coquerel, Y.; Rodriguez, J. Expeditious divergent synthetic approach to polycyclic terpene-like molecules. Chem. Eur. J. 2011, 17, 2048-2051.
Tolomelli, A.; Gentilucci, L.; Mosconi, E.; Viola, A.; Paradisi, E. A straightforward route to enantiopure 2-substituted 3,4-dehydro-β-proline via ring closing metathesis. Amino Acids 2011, 41, 575-586.
Hong, S. H.; Grubbs, R. H. Highly active water-soluble olefin metathesis catalyst. J. Am. Chem. Soc. 2006, 128, 3508-3509.
Déchamps, I.; Gomez Pardo, D.; Cossy, J. Enantioselective ring expansion of prolinols and ringclosing metathesis: Formal synthesis of (-)-swainsonine. Arkivoc 2007 (v), 38-45.
Woodward, C. P.; Spiccia, N. D.; Jackson, W. R.; Robinson, A. J. A simple amine protection strategy for olefin metathesis reactions. Chem. Commun. 2011, 47, 779-781.
Pearson, W. H.; Aponick, A.; Dietz, A. L. Synthesis of N,N-bis(3-butenyl)amines from 2-azaallyl dication synthetic equivalents and conversion to 2,3,6,7-tetrahydroazepines by ring-closing metathesis, J. Org. Chem. 2006, 71, 3533-3539.
Gracias, V.; Gasiecki, A. F.; Moore, J. D.; Akritopoulou-Zanze, I.; Djuric, S. W. An expedient route to diaza-spirocycles utilizing a sequential multicomponent α-aminoallylation/ring-closing metathesis strategy. Tetrahedron Lett. 2006, 47, 8977-8980.
Lee, J. H.; Shin, S.; Kang, J.; Lee, S. Ir-catalyzed allylic amination/ring-closing metathesis: A new route to enantioselective synthesis of cyclic ¬-amino alcohol derivatives. J. Org. Chem. 2007, 72, 7443-7446.
Yang, Q.; Xiao, W.-J.; Yu, Z. Lew acid assisted ring-closing metathesis of chiral diallylamines: An efficient approach to enantiopure pyrrolidine derivatives. Org. Lett. 2005, 7, 871-874.
Compain, P. Olefin metathesis of amine-containing systems: Beyond the current consensus. Adv. Synth. Catal. 2007, 349, 1829-1846.
Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. D.; Díez, R.; Gálvez, J. A. Efficient stereodivergent synthesis of 1,4-dideoxy-1,4-iminohexitols from an (S)-glyceraldimine. Tetrahedron Lett. 2004, 45, 719-722.
Ayad, T.; Génisson, Y.; Baltas, M. Asymmetric syntheses of (-)-lentiginosine and an original pyrrolizidinic analogue thereof from a versatile epoxyamine intermediate. Org. Biomol. Chem. 2005, 3, 2626-2631.
Karanjule, N. S.; Markad, S. D.; Dhavale, D. D. Synthesis of pentahydroxy indolizidine alkaloids using ring closing metathesis: Attempts to find the correct structure of uniflorine A. J. Org. Chem. 2006, 71, 6273-6276.
Prusov, E.; Maier, M. E. Synthesis of nitrogen-containing spirocyclic scaffolds via aminoallylation/ RCM sequence. Tetrahedron 2007, 63, 10486-10496.
Chandrasekhar, B.; Rao, B. V.; Rao, K. V. M.; Jagadeesh, B. A short and common stereoselective approach to 5/6, 6/6, 6/7 bicyclic aza sugars. Tetrahedron: Asymmetry 2009, 20, 1217-1223.
Gálvez, J. A.; Díaz de Villegas, M. D.; Badorrey, R.; López-Ram-de-Víu, P. Switch in regioselectivity of epoxide ring-opening by changing the organometallic reagent. Org. Biomol. Chem. 2011, 9, 8155-8162.
Kuhn, K. M.; Champagne, T. M.; Hong, S. H.; Wei, W.-H.; Nickel, A.; Lee, C. W.; Virgil, S. C.; Grubbs, R. H.; Pederson, R. L. Low catalyst loadings in olefin metathesis: Synthesis of nitrogen heterocycles by ring-closing metathesis. Org. Lett. 2010, 12, 984-987.
See also: Kadyrov, R. Low catalyst loading in ring-closing metathesis reactions. Chem. Eur. J. 2013, 19, 1002-1012.
Klitzke, C. F.; Pilli, R. A. Enhanced trans diastereoselection in the allylation of cyclic chiral N-acyliminium ions. Synthesis of hydroxylated indolizidines. Tetrahedron Lett. 2001, 42, 5605-5608.
Chandra, K. L.; Chandrasekhar, M.; Singh, V. K. Total synthesis of (-)-and (+)-lentiginosine. J. Org. Chem. 2002, 67, 4630-4633.
Lahiri, R.; Kokatla, H. P.; Vankar, Y. D. An improved method of ring closing metathesis in the presence of basic amines: Application to the formal synthesis of (+)-lentiginosine and other piperidines and carbamino sugar analogs. Tetrahedron Lett. 2011, 52, 781-786.
Arjona, O.; Gómez, A. M.; López, J. C.; Plumet, J. Synthesis and conformational and biological aspects of carbasugars. Chem. Rev. 2007, 107, 1919-2036.
Plumet, J.; Gómez, A. M.; López, J. C. Synthesis of carbasugars based on ring closing metathesis: 2000-2006. Mini-Rev. Org. Chem. 2007, 4, 201-216.
Aljarilla, A.; López, J. C.; Plumet, J. Metathesis reactions of carbohydrates: Recent highlights in cross-metathesis. Eur. J. Org. Chem. 2010, 6123-6143.
López, J. C.; Plumet, J. Metathesis reactions of carbohydrates: Recent highlights in alkyne metathesis. Eur. J. Org. Chem. 2011, 1803-1825.
Dragutan, I.; Dragutan, V.; Mitan, C.; Vosloo, H. C. M.; Delaude, L.; Demonceau, A. Metathesis access to monocyclic iminocyclitol-based therapeutic agents. Beilstein J. Org. Chem. 2011, 7, 699-716.
Dragutan, I.; Dragutan, V.; Demonceau, A. Targeted drugs by olefin metathesis: Piperidine-based iminosugars. RSC Adv. 2012, 2, 719-736.
Dragutan, I.; Dragutan, V.; Demonceau, A.; Vosloo, H. C. M. Synthesis of castanospermine and epimers by metathesis routes. Curr. Org. Chem. 2013, 17(22), 2721-2739.
Rajender, A.; Rao, J. P.; Rao, B. V. A new stereoselective approach to aminocyclohexitols using RCM. Tetrahedron: Asymmetry 2011, 22, 1306-1311.
Rao, M. V.; Chandrasekhar, B.; Rao, B. V.; Swarnalatha, J. L. A new stereoselective approach to aminocyclohexitols using a Grignard addition on to an N-benzyl sugar imine and RCM. Tetrahedron: Asymmetry 2011, 22, 1342-1346.
Harrak, Y.; Barra, C. M.; Delgado, A.; Castaño, A. R.; Llebaria, A. Galactoconfigured aminocyclitol phytoceramides are potent in vivo invariant natural killer T cell stimulators. J. Am. Chem. Soc. 2011, 133, 12079-12084.
Yang, J.; Xu, H.; Zhang, Y.; Bai, L.; Deng, Z.; Mahmud, T. Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis. Org. Biomol. Chem. 2011, 9, 438-449.
Natori, Y.; Imahori, T.; Murakami, K.; Yoshimura, Y.; Nakagawa, S.; Kato, A.; Adachi, I.; Takahata, H. The synthesis and biological evaluation of 1-C-alkyl-L-arabinoiminofuranoses, a novel class of α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 738-741.
Kato, A.; Hayashi, E.; Miyauchi, S.; Adachi, I.; Imahori, T.; Natori, Y.; Yoshimura, Y.; Nash, R. J.; Shimaoka, H.; Nakagome, I.; Koseki, J.; Hirono, S.; Takahata, H. α-1-CButyl-1,4-dideoxy-1,4-imino-L-arabinitol as a second-generation iminosugarbased oral α-glucosidase inhibitor for improving postprandial hyperglycemia. J. Med. Chem. 2012, 55, 10347-10362.
Lee, J. C.; Francis, S.; Dutta, D.; Gupta, V.; Yang, Y.; Zhu, J.-Y.; Tash, J. S.; Schönbrunn, E.; Georg, G. I. Synthesis and evaluation of eight-and fourmembered iminosugar analogues as inhibitors of testicular ceramide-specific glucosyltransferase, testicular β-glucosidase 2, and other glycosidases. J. Org. Chem. 2012, 77, 3082-3098.
Harrington, P. J.; Brown, J. D.; Foderaro, T.; Hughes, R. C. Research and development of a second-generation process for oseltamivir phosphate, prodrug for a neuraminidase inhibitor. Org. Process Res. Dev. 2004, 8, 86-91.
Farina, V.; Brown, J. D. Tamiflu: The supply problem. Angew. Chem. Int. Ed. 2006, 45, 7330-7334.
Shibasaki, M.; Kanai, M. Synthetic strategies for oseltamivir phosphate. Eur. J. Org. Chem. 2008, 1839-1850.
Magano, J. Recent synthetic approaches to oseltamivir phosphate (TamifluTM) for the treatment of influenza. Tetrahedron 2011, 67, 7875-7899.
Cong, X.; Yao, Z.-J. Ring-closing metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5-amino-3-hydroxycyclohex-1-ene-carboxylic acid ethyl ester: A functionalized cycloalkene skeleton of GS4104. J. Org. Chem. 2006, 71, 5365-5368.
Oh, H.-S.; Kang, H.-Y. Synthesis of (-)-oseltamivir phosphate (Tamiflu) starting from cis-2,3-bis(hydroxymethyl)aziridine. J. Org. Chem. 2012, 77, 8792-8796.
Wichienukul, P.; Akkarasamiyo, S.; Kongkathip, N.; Kongkathip, B. An efficient synthesis of oseltamivir phosphate (Tamiflu) via a metal-mediated domino reaction and ring-closing metathesis. Tetrahedron Lett. 2010, 51, 3208-3210.
See also: Kancharla, P. K.; Doddi, V. R.; Kokatla, H.; Vankar, Y. D. A concise route to (-)-shikimic acid and (-)-5-epi-shikimic acid, and their enantiomers via Barbier reaction and ring-closing metathesis. Tetrahedron Lett. 2009, 50, 6951-6954.
Osato, H.; Jones, I. L.; Goh, H.; Chai, C. L. L.; Chen, A. Expeditious access to (-)-shikimic acid derivatives for Tamiflu synthesis. Tetrahedron Lett. 2011, 52, 6352-6354.
Grim, J. C.; Garber, K. C. A.; Kiessling, L. L. Glycomimetic building blocks: A divergent synthesis of epimers of shikimic acid. Org. Lett. 2011, 13, 3790-3793.
Morzycki, J. W. Application of olefin metathesis in the synthesis of steroids. Steroids 2011, 76, 949-966.
See also: Kotora, M.; Hessler, F.; Eignerová, B. Transition-metal-mediated or -catalyzed syntheses of steroids and steroidlike compounds. Eur. J. Org. Chem. 2012, 29-42.
Foucher, V.; Guizzardi, B.; Groen, M. B.; Light, M.; Linclau, B. A novel, versatile D→BCD steroid construction strategy, illustrated by the enantioselective total synthesis of estrone. Org. Lett. 2010, 12, 680-683.
Hessler, F.; Císarová, I.; Sedlák, D.; Bartunek, P.; Kotora, M. Synthesis of ferrocenestrone: The first metallocene based steroid analogue. Chem. Eur. J. 2012, 18, 5515-5518.
Farhane, S.; Fournier, M.-A.; Maltais, R.; Poirier, D. Convergent stereoselective and efficient synthesis of furanic-steroid derivatives. Tetrahedron 2011, 67, 2434-2440.
Saloranta, T.; Zupkó, I.; Rahkila, J.; Schneider, G.; Wölfling, J.; Leino, R. Increasing the amphiphilicity of an estradiol based steroid structure by Barbier-allylation-ring-closing metathesis-dihydroxylation sequence. Steroids 2012, 77, 110-117.
Bai, X.; Barnes, C.; Pascal, R. A., Jr.; Chen, X.; Dias, J. R. Bile acidbased cage compounds with lipophilic outer shells and inner cavities. Org. Lett. 2011, 13, 3064-3067.
Ibrahim-Ouali, M.; Bouleghlem, H.; Aouf, N.-E. Ring-closing metathesis towards functionalised pentacyclic steroids. Tetrahedron Lett. 2012, 53, 1859-1862.
See also: Ibrahim-Ouali, M.; Romero, E. Synthesis of various secosteroidal macrocycles by ring-closing metathesis. Steroids 2013, 78, 651-661.
Czajkowska, D.; Morzycki, J. W. Synthesis of cholaphanes by ring closing metathesis. Tetrahedron Lett. 2007, 48, 2851-2855.
For the first examples of phthalate-, succinate-, and glutarate-tethered RCM, see: Fan, G.-T.; Hus, T.-S.; Lin, C.-C.; Lin, C.-C. Ring-closing olefin metathesis of prearranged C-allyl saccharides for the synthesis of C-butenyl linked homo-and hetero-disaccharides. Tetrahedron Lett. 2000, 41, 6593-6597.
Sakamoto, Y.; Okazaki, M.; Miyamoto, K.; Nakata, T. Efficient phthalate-tethered ringclosing metathesis as a cross-coupling reaction. Tetrahedron Lett. 2001, 42, 7633-7636.
Hamamoto, Y.; Tachibana, K.; Holland, P. T.; Shi, F.; Beuzenberg, V.; Itoh, Y.; Satake, M. Brevisulcenal-F: A polycyclic ether toxin associated with massive fish-kills in New Zealand. J. Am. Chem. Soc. 2012, 134, 4963-4968.
Torikai, K.; Oishi, T.; Ujihara, S.; Matsumori, N.; Konoki, K.; Murata, M.; Aimoto, S. Design and synthesis of ladder-shaped tetracyclic, heptacyclic, and decacyclic ethers and evaluation of the interaction with transmembrane proteins. J. Am. Chem. Soc. 2008, 130 10217-10226.
Nicolaou, K. C.; Aversa, R. J. Maitotoxin: An inspiration for synthesis. Isr. J. Chem. 2011, 51, 359-377.
Inoue, M. Convergent strategies for syntheses of trans-fused polycyclic ethers. Chem. Rev. 2005, 105, 4379-4405.
Nicolaou, K. C.; Frederick, M. O.; Aversa, R. J. The continuing saga of the marine polyether biotoxins. Angew. Chem. Int. Ed. 2008, 47, 7182-7225.
For RCM-based syntheses of brevenal, see: Takamura, H.; Kikuchi, S.; Nakamura, Y.; Yamagami, Y.; Kishi, T.; Kadota, I.; Yamamoto, Y. Total synthesis of brevenal. Org. Lett. 2009, 11, 2531-2534.
Takamura, H.; Yamagami, Y.; Kishi, T.; Kikuchi, S.; Nakamura, Y.; Kadota, I.; Yamamoto, Y. Total synthesis of brevenal. Tetrahedron 2010, 66, 5329-5344.
Crimmins, M. T.; Shamszad, M.; Mattson, A. E. A highly convergent approach toward (-)-brevenal. Org. Lett. 2010, 12, 2614-2617.
Zhang, Y.; Rohanna, J.; Zhou, J.; Iyer, K.; Rainier, J. D. Total synthesis of brevenal. J. Am. Chem. Soc. 2011, 133, 3208-3216.
Crimmins, M. T.; Ellis, J. M.; Emmitte, K. A.; Haile, P. A.; McDougall, P. J.; Parrish, J. D.; Zuccarello, J. L. Enantioselective total synthesis of brevetoxin A: Unified strategy for the B, E, G, and J subunits. Chem. Eur. J. 2009, 15, 9223-9234.
For a recent synthesis of brevetoxin B involving RCM as the key step, see: Kadota, I.; Nishii, H.; Ishioka, H.; Takamura, H.; Yamamoto, Y. Improved synthesis of the A-G ring segment of brevetoxin B. J. Org. Chem. 2006, 71, 4183-4187.
Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Oguri, H.; Satake, M. Total synthesis of ciguatoxin CTX3C. Science 2001, 294, 1904-1907.
Inoue, M.; Miyazaki, K.; Uehara, H.; Maruyama, M.; Hirama, M. First-and second-generation total synthesis of ciguatoxin CTX3C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12013-12018.
Inoue, M.; Hirama, M. Evolution of a practical total synthesis of ciguatoxin CTX3C. Acc. Chem. Res. 2004, 37, 961-968.
Inoue, M.; Miyazaki, K.; Ishihara, Y.; Tatami, A.; Ohnuma, Y.; Kawada, Y.; Komano, K.; Yamashita, S.; Lee, N.; Hirama, M. Total synthesis of ciguatoxin and 51-hydroxyCTX3C. J. Am. Chem. Soc. 2006, 128, 9352-9354.
For recent reports, see: Goto, A.; Fujiwara, K.; Kawai, A.; Kawai, H.; Suzuki, T. Synthesis of the EF-ring of ciguatoxin 3C based of the [2,3]-Wittig rearrangement and ring-closing olefin metathesis. Org. Lett. 2007, 9, 5373-5376.
Kadota, I.; Abe, T.; Uni, M.; Takamura, H.; Yamamoto, Y. Convergent synthesis of the A-E ring segment of ciguatoxin CTX3C. Tetrahedron 2009, 65, 7784-7789.
Takamura, H.; Nishiuma, N.; Abe, T.; Kadota, I. Convergent synthesis of the HIJKLM ring system for ciguatoxin CTX3C. Org. Lett. 2011, 13, 4704-4707.
Yamashita, S.; Uematsu, R.; Hirama, M. Stereoselective synthesis of the left wing of caribbean ciguatoxin. Tetrahedron 2011, 67, 6616-6626.
Takamura, H.; Abe, T.; Nishiuma, N.; Fujiwara, R.; Tsukeshiba, T.; Kadota, I. A convergent synthesis of the right-hand fragment of ciguatoxin CTX3C. Tetrahedron 2012, 68, 2245-2260.
Nogoshi, K.; Domon, D.; Fujiwara, K.; Kawamura, N.; Katoono, R.; Kawai, H.; Suzuki, T. An Ireland-Claisen rearrangement/RCM based approach for the construction of the EF-ring of ciguatoxin 3C. Tetrahedron Lett. 2013, 54, 676-680.
For a recent application of cross-metathesis, see: Kadota, I.; Abe, T.; Uni, M.; Takamura, H.; Yamamoto, Y. A crossmetathesis approach to the stereocontrolled synthesis of the AB ring segment of ciguatoxin. Tetrahedron Lett. 2008, 49, 3643-3647.
Yamashita, S.; Ishihara, Y.; Morita, H.; Uchiyama, J.; Takeuchi, K.; Inoue, M.; Hirama, M. Stereoselective 6-exo radical cyclization using cis-vinyl sulfoxide: Practical total synthesis of CTX3C. J. Nat. Prod. 2011, 74, 357-364.
For RCM-based syntheses of maitotoxin subunits, see: Nicolaou, K. C.; Frederick, M. O.; Burtoloso, A. C. B.; Denton, R. M.; Rivas, F.; Cole, K. P.; Aversa, R. J.; Gibe, R.; Umezawa, T.; Suzuki, T. Chemical synthesis of the GHIJKLMNO ring system of maitotoxin. J. Am. Chem. Soc. 2008, 130, 7466-7476.
Nicolaou, K. C.; Gelin, C. F.; Seo, J. H.; Huang, Z.; Umezawa, T. Synthesis of the QRSTU domain of maitotoxin and its 85-epiand 86-epi-diastereoisomers. J. Am. Chem. Soc. 2010, 132, 9900-9907.
Nicolaou, K. C.; Baker, T. M.; Nakamura, T. Synthesis of the WXYZA' domain of maitotoxin. J. Am. Chem. Soc. 2011, 133, 220-226.
Beaumont, S.; Ilardi, E. A.; Tappin, N. D. C.; Zakarian, A. Marine toxins with spiroimine rings: Total synthesis of pinnatoxin A. Eur. J. Org. Chem. 2010, 5743-5765.
Stivala, C. E.; Zakarian, A. Total synthesis of (+)-pinnatoxin A. J. Am. Chem. Soc. 2008, 130, 3774-3776.
Araoz, R.; Servent, D.; Molgó, J.; Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; Gu, Z.; Stivala, C.; Zakarian, A. Total synthesis of pinnatoxins A and G and revision of the mode of action of pinnatoxin A. J. Am. Chem. Soc. 2011, 133, 10499-10511.
Jena, B. K.; Mohapatra, D. K. Synthesis of the C1-C15 fragment of palmerolide A via protecting group dependent RCM reaction. Tetrahedron Lett. 2013, 54, 3415-3418.
Alexander, M. D.; Fontaine, S. D.; La Clair, J. J.; DiPasquale, A. G.; Rheingold, A. L.; Burkart, M. D. Synthesis of the mycolactone core by ringclosing metathesis. Chem. Commun. 2006, 4602-4604.
Feyen, F.; Jantsch, A.; Altmann, K.-H. Synthetic studies on mycolactones: Synthesis of the mycolactone core structure through ring-closing olefin metathesis. Synlett 2007, 415-418.
Ko, K.-S.; Alexander, M. D.; Fontaine, S. D.; Biggs-Houck, J. E.; La Clair, J. J.; Burkart, M. D. Synthetic studies on the mycolactone core. Org. Biomol. Chem. 2010, 8, 5159-5165.
Gersbach, P.; Jantsch, A.; Feyen, F.; Scherr, N.; Dangy, J.-P.; Pluschke, G.; Altmann, K.-H. A ringclosing metathesis (RCM)-based approach to mycolactones A/B. Chem. Eur. J. 2011, 17, 13017-13031.
Chany, A.-C.; Casarotto, V.; Schmitt, M.; Tarnus, C.; Guenin-Macé, L.; Demangel, C.; Mirguet, O.; Eustache, J.; Blanchard, N. A diverted total synthesis of mycolactone analogues: An insight into Buruli ulcer toxins. Chem. Eur. J. 2011, 17, 14413-14419.
Chandrasekhar, S.; Sreelakshmi, L. Formal synthesis of fumonisin B1, a potent sphingolipid biosynthesis inhibitor. Tetrahedron Lett. 2012, 53, 3233-3236.
Fürstner, A.; Bouchez, L. C.; Morency, L.; Funel, J.-A.; Liepins, V.; Porée, F.-H.; Gilmour, R.; Laurich, D.; Beaufils, F.; Tamiya, M. Total syntheses of amphidinolides B1, B4, G1, H1 and structure revision of amphidinolide H2. Chem. Eur. J. 2009, 15, 3983-4010.
Ko, H. M.; Lee, C. W.; Kwon, H. K.; Chung, H. S.; Choi, S. Y.; Chung, Y. K.; Lee, E. Total synthesis of (-)-amphidinolide K. Angew. Chem. Int. Ed. 2009, 48, 2364-2366.
Li, H.; Wu, J.; Luo, J.; Dai, W.-M. A concise total synthesis of amphidinolide T2. Chem. Eur. J. 2010, 16, 11530-11534.
Fürstner, A. From total synthesis to diverted total synthesis: Case studies in the amphidinolide series. Isr. J. Chem. 2011, 51, 329-345.
Zhu, W.; Jiménez, M.; Jung, W.-H.; Camarco, D. P.; Balachandran, R.; Vogt, A.; Day, B. W.; Curran, D. P. Streamlined syntheses of (-)-dictyostatin, 16-desmethyl-25,26-dihydrodictyostatin, and 6-epi-16-desmethyl-25,26-dihydrodictyostatin. J. Am. Chem. Soc. 2010, 132, 9175-9187.
Trost, B. M.; Dong, G.; Vance, J. A. Cyclic 1,2-diketones as core building blocks: A strategy for the total synthesis of (-)-terpestacin. Chem. Eur. J. 2010, 16, 6265-6277.
Fuwa, H.; Saito, A.; Naito, S.; Konoki, K.; Yotsu-Yamashita, M.; Sasaki, M. Total synthesis and biological evaluation of (+)-neopeltolide and its analogues. Chem. Eur. J. 2009, 15, 12807-12818.
Fuwa, H.; Saito, A.; Sasaki, M. A concise total synthesis of (+)-neopeltolide. Angew. Chem. Int. Ed. 2010, 49, 3041-3044.
Sharma, G. V. M.; Reddy, S. V.; Ramakrishna, K. V. S. Synthesis of the macrolactone core of (+)-neopeltolide by transannular cyclization. Org. Biomol. Chem. 2012, 10, 3689-3695.
Fuwa, H.; Kawakami, M.; Noto, K.; Muto, T.; Suga, Y.; Konoki, K; Yotsu-Yamashita, M.; Sasaki, M. Concise synthesis and biological assessment of (+)-neopeltolide and a 16-member stereoisomer library of 8,9-dehydroneopeltolide: Identification of pharmacophoric elements. Chem. Eur. J. 2013, 19, 8100-8110.
Ghosh, A. K.; Anderson, D. D. Enantioselective total synthesis of pladienolide B: A potent spliceosome inhibitor. Org. Lett. 2012, 14, 4730-4733.
Garg, N. K.; Hiebert, S.; Overman, L. E. Total synthesis of (-)-sarain A. Angew. Chem. Int. Ed. 2006, 45, 2912-2915.
Kobayashi, J. Amphidinolides and its related macrolides from marine dinoflagellates. J. Antibiot. 2008, 61, 271-284.
Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C. M. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 1995, 55, 2325-2333.
Gerth, K.; Bedorf, N.; Höfle, G.; Irschik, H.; Reichenbach, H. Epothilones A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. 1996, 49, 560-563.
Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Epothilone A and B-Novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. Engl. 1996, 35, 1567-1569.
Höfle, G.; Glaser, N.; Kiffe, M.; Hecht, H.-J.; Sasse, F.; Reichenbach, H. N-Oxidation of epothilone A-C and O-acyl rearrangement to C-19-and C-21-substituted epothilones. Angew. Chem. Int. Ed. Engl. 1999, 38, 1971-1974.
Villanueva, C. B.; Bazan, F. F.; Pivot, X. B. New microtubule inhibitors in breast cancer. Curr. Breast Cancer Rep. 2013, 5, 1-10.
Bollag, D. M. Epothilones: Novel microtubule-stabilizing agents. Expert Opin. Investig. Drugs 1997, 6, 867-873.
Hirsch, B. R.; Reed, S. D.; Lyman, G. H. Update on the role of epothilones in metastatic breast cancer. Curr. Breast Cancer Rep. 2013, 5, 51-56.
Valero, V. Managing ixabepilone adverse events with dose reduction. Clin. Breast Cancer 2013, 13, 1-6.
For a recent review on syntheses of epothilones, see: Mulzer, J.; Altmann, K.-H.; Höfle, G.; Müller, R.; Prantz, K. Epothilones-A fascinating family of microtubule stabilizing antitumor agents. C. R. Chimie 2008, 11, 1336-1368.
Keck, G. E.; Giles, R. L.; Cee, V. J.; Wager, C. A.; Yu, T.; Kraft, M. B. Total synthesis of epothilones B and D: Stannane equivalents for β-keto ester dianions. J. Org. Chem. 2008, 73, 9675-9691.
Schiess, R.; Gertsch, J.; Schweizer, W. B.; Altmann, K.-H. Stereoselective synthesis of 12,13-cyclopropyl-epothilone B and side-chain-modified variants. Org. Lett. 2011, 13, 1436-1439.
Kuzniewski, C. N.; Gertsch, J.; Wartmann, M.; Altmann, K.-H. Total synthesis of hypermodified epothilone analogs with potent in vitro antitumor activity. Org. Lett. 2008, 10, 1183-1186.
Alhamadsheh, M. M.; Gupta, S.; Hudson, R. A.; Perera, L.; Tillekeratne, L. M. V. Total synthesis and selective activity of a new class of conformationally restrained epothilones. Chem. Eur. J. 2008, 14, 570-581.
Chen, Q.-H.; Ganesh, T.; Brodie, P.; Slebodnick, C.; Jiang, Y.; Banerjee, A.; Bane, S.; Snyder, J. P.; Kingston, D. G. I. Design, synthesis and biological evaluation of bridged epothilone D analogues. Org. Biomol. Chem. 2008, 6, 4542-4552.
Hayashi, M.; Kim, Y.-P.; Hiraoka, H.; Natori, M.; Takamatsu, S.; Kawakubo, T.; Masuma, R.; Komiyama, K.; Omura, S. Macrosphelide, a novel inhibitor of cell-cell adhesion molecule. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 1995, 48, 1435-1439.
Takamatsu, S.; Kim, Y.-P.; Hayashi, M.; Hiraoka, H.; Natori, M.; Komiyama, K.; Omura, S. Macrosphelide, a novel inhibitor of cell-cell adhesion molecule: II. Physiochemical properties and structural elucidation. J. Antibiot. 1996, 49, 95-98.
Sunazuka, T.; Hirose, T.; Harigaya, Y.; Takamatsu, S.; Hayashi, M.; Komiyama, K.; Omura, S.; Sprengeler, P. A.; Smith, A. B., III Relative and absolute stereochemistries and total synthesis of (+)-macrosphelides A and B, potent, orally bioavailable inhibitors of cell-cell adhesion. J. Am. Chem. Soc. 1997, 119, 10247-10248.
Takamatsu, S.; Hiraoka, H.; Kim, Y.-P.; Hayashi, M.; Natori, M.; Komiyama, K.; Omura, S. Macrosphelides C and D, novel inhibitors of cell adhesion. J. Antibiot. 1997, 50, 878-880.
Numata, A.; Iritani, M.; Yamada, T.; Minoura, K.; Matsumura, E.; Yamori, T.; Tsuruo, T. Novel antitumour metabolites produced by a fungal strain from a sea hare. Tetrahedron Lett. 1997, 38, 8215-8218.
Fukami, A.; Taniguchi, Y.; Nakamura, T.; Rho, M. C.; Kawaguchi, K.; Hayashi, M.; Komiyama, K.; Omura, S. New members of the macrosphelides from Microsphaeropsis sp. FO-5050 IV. J. Antibiot. 1999, 52, 501-504.
Yamada, T.; Iritani, M.; Doi, M.; Minoura, K.; Ito, T.; Numata, A. Absolute stereostructures of celladhesion inhibitors, macrosphelides C, E-G and I, produced by a Periconia species separated from an Aplysia sea hare. J. Chem. Soc., Perkin Trans. 1 2001, 3046-3053.
Yamada, T.; Iritani, M.; Minoura, K.; Numata, A.; Kobayashi, Y.; Wang, Y.-G. Absolute stereostructures of cell adhesion inhibitors, macrosphelides H and L, from Periconia byssoides OUPS-N133. J. Antibiot. 2002, 55, 147-154.
Matsuya, Y.; Kawaguchi, T.; Nemoto, H. New strategy for the total synthesis of macrosphelides A and B based on ring-closing metathesis. Org. Lett. 2003, 5, 2939-2941.
Kawaguchi, T.; Funamori, N.; Matsuya, Y.; Nemoto, H. Total synthesis of macrosphelides A, B, and E: First application of ring-closing metathesis for macrosphelide synthesis. J. Org. Chem. 2004, 69, 505-509.
Sharma, G. V. M.; Babu, K. V. RCM mediated synthesis of macrosphelides I and G. Tetrahedron: Asymmetry 2007, 18, 2175-2184.
Sharma, G. V. M.; Reddy, P. S. Total synthesis of macrosphelide M from diacetone glucose. Eur. J. Org. Chem. 2012, 2414-2421.
Matsuya, Y.; Kobayashi, Y.; Kawaguchi, T.; Hori, A.; Watanabe, Y.; Ishihara, K.; Ahmed, K.; Wei, Z.-L.; Yu, D.-Y.; Zhao, Q.-L.; Kondo, T.; Nemoto, H. Design, synthesis, and biological evaluation of artificial macrosphelides in the search for new apoptosis-inducing agents. Chem. Eur. J. 2009, 15, 5799-5813.
Sugimoto, K.; Kobayashi, Y.; Hori, A.; Kondo, T.; Toyooka, N.; Nemoto, H.; Matsuya, Y. Syntheses of aza-analogues of macrosphelides via RCM strategy and their biological evaluation. Tetrahedron 2011, 67, 7681-7685.
Matsuya, Y.; Kawaguchi, T.; Ishihara, K.; Ahmed, K.; Zhao, Q.-L.; Kondo, T.; Nemoto, H. Synthesis of macrosphelides with a thiazole side chain: New antitumor candidates having apoptosis-inducing property. Org. Lett. 2006, 8, 4609-4612.
Matsuya, Y.; Nemoto, H. Artificial macrosphelides as a novel apoptosisinduced compound. Heterocycles 2010, 81, 57-66.
Uchida, I.; Takase, S.; Kayakiri, H.; Kiyoto, S.; Hashimoto, M.; Tada, T.; Koda, S.; Morimoto, Y. Structure of FR 900482, a novel antitumor antibiotic from a Streptomyces. J. Am. Chem. Soc. 1987, 109, 4108-4109.
Rajski, S. R.; Williams, R. M. DNA cross-linking agents as antitumor drugs. Chem. Rev. 1998, 98, 2723-2795.
Fellows, I. M.; Kaelin, D. E., Jr.; Martin, S. F. Application of ring-closing metathesis to the formal total synthesis of (+)-FR900482. J. Am. Chem. Soc. 2000, 122, 10781-10787.
Mak, X. Y.; Crombie, A. L.; Danheiser, R. L. Synthesis of polycyclic benzofused nitrogen heterocycles via a tandem ynamide benzannulation/ring-closing metathesis strategy. Application in a formal total synthesis of (+)-FR900482. J. Org. Chem. 2011, 76, 1852-1873.
Lin, Y. A.; Davis, B. G. The allylic chalcogen effect in olefin metathesis. Beilstein J. Org. Chem. 2010, 6, 1219-1228.
Reddy, V. K.; Miyabe, H.; Yamauchi, M.; Takemoto, Y. Enantioselective synthesis of [1,2]-oxazinone scaffolds and [1,2]-oxazine core structures of FR900482. Tetrahedron 2008, 64, 1040-1048.
Papaioannou, N.; Blank, J. T.; Miller, S. J. Enantioselective synthesis of an aziridinomitosane and selective functionalizations of a key intermediate. J. Org. Chem. 2003, 68, 2728-2734.
Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. FR901483, a novel immunosuppressant isolated from Cladobotryum sp. No. 11231. Taxonomy of the producing organism, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1996, 49, 37-44.
Huo, H.-H.; Zhang, H.-K.; Xia, X.-E.; Huang, P.-Q. A formal enantioselective total synthesis of FR901483. Org. Lett. 2012, 14, 4834-4837.
Huo, H.-H.; Xia, X.-E.; Zhang, H.-K.; Huang, P.-Q. Enantioselective total syntheses of (-)-FR901483 and (+)-8-epi-FR901483. J. Org. Chem. 2013, 78, 455-465.
For early applications of RCM in the synthesis of the azatricyclic core of FR901483, see: Suzuki, H.; Yamazaki, N.; Kibayashi, C. Synthesis of the azatricyclic core of FR901483 by bridgehead vinylation via an anti-Bredt iminium ion. Tetrahedron Lett. 2001, 42, 3013-3015.
Simila, S. T. M.; Reichelt, A.; Martin, S. F. Synthetic studies toward the immunosuppressant FR901483. Facile construction of the azatricyclic skeleton. Tetrahedron Lett. 2006, 47, 2933-2936.
Simila, S. T. M.; Martin, S. F. Toward the total synthesis of FR901483: Concise synthesis of the azatricyclic skeleton. J. Org. Chem. 2007, 72, 5342-5349.
Martin, H. J.; Magauer, T.; Mulzer, J. In pursuit of a competitive target: Total synthesis of the antibiotic kendomycin. Angew. Chem. Int. Ed. 2010, 49, 5614-5626.
Martin, H. J.; Magauer, T.; Mulzer, J. In pursuit of an elusive target: Our kendomycin story. Strategies and Tactics in Organic Synthesis, 2012, 8, 261-289.
Bicchielli, D.; Borguet, Y.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Hans, M.; Jossifov, C.; Nicks, F.; Willem, Q. Olefin metathesis as key step in the synthesis of bioactive compounds: Challenges in the total synthesis of (-)-kendomycin. Curr. Org. Synth. 2012, 9, 397-405.
Magauer, T.; Martin, H. J.; Mulzer, J. Total synthesis of the antibiotic kendomycin by macrocyclization using photo-Fries rearrangement and ringclosing metathesis, Angew. Chem. Int. Ed. 2009, 48, 6032-6036.
Magauer, T.; Martin, H. J.; Mulzer, J. Ring-closing metathesis and photo-Fries reaction for the construction of the ansamycin antibiotic kendomycin: Development of a protecting group free oxidative endgame, Chem. Eur. J. 2010, 16, 507-519.
Smith, A. B., III; Mesaros, E. F.; Meyer, E. A. Total synthesis of (-)-kendomycin exploiting a Petasis-Ferrier rearrangement/ring-closing olefin metathesis synthetic strategy, J. Am. Chem. Soc. 2005, 127, 6948-6949.
Smith, A. B., III; Mesaros, E. F.; Meyer, E. A. Evolution of a total synthesis of (-)-kendomycin exploiting a Petasis-Ferrier rearrangement/ring-closing olefin metathesis strategy, J. Am. Chem. Soc. 2006, 128, 5292-5299.
Sengoku, T.; Uemura, D.; Arimoto, H. Ring-closing metathesis approach to a 16-membered macrocycle of kendomycin, Chem. Lett. 2007, 36, 726-727.
Demonceau, A.; Dragutan, I.; Dragutan, V.; Le Gendre, P. Olefin metathesis as key step in the synthesis of bioactive compounds: Challenges in the total synthesis of iriomoteolides. Curr. Org. Synth. 2012, 9, 779-790.
Xie, J.; Ma, Y.; Horne, D. A. Total synthesis of the proposed structure of iriomoteolide-1a. Chem. Commun. 2010, 46, 4770-4772.
Xie, J.; Ma, Y.; Horne, D. A. Total synthesis of the proposed structure of iriomoteolide 1a. Tetrahedron 2011, 67, 7485-7501.
Liu, Y.; Feng, G.; Wang, J.; Wu, J.; Dai, W.-M. Synthesis of two diastereomers of iriomoteolide-1a via a tunable four-module coupling approach using ring-closing metathesis as the key step. Synlett 2011, 1774-1778.
Huang, J.; Yang, J. Studies toward elucidating the stereochemical structure of iriomoteolide 1a. Synlett 2012, 23, 737-740.
Crimmins, M. T.; Dechert, A.-M. R. Enantioselective synthesis of the C1-C6 and C7-C23 fragments of the proposed structure of iriomoteolide 1a. Org. Lett. 2012, 14, 2366-2369.
Ye, Z.; Gao, T.; Zhao, G. Enantioselective total synthesis of the proposed structure of macrolide iriomoteolide-1b. Tetrahedron 2011, 67, 5979-5989.
Cribiú, R.; Jäger, C.; Nevado, C. Syntheses and biological evaluation of iriomoteolide 3a and analogues. Angew. Chem. Int. Ed. 2009, 48, 8780-8783.
Reddy, C. R.; Dharmapuri, G.; Rao, N. N. Synthesis of the macrocyclic core of iriomoteolide 3a. Org. Lett. 2009, 11, 5730-5733.
Fogg, D. E.; dos Santos, E. N. Tandem catalysis: A taxonomy and illustrative review. Coord. Chem. Rev. 2004, 248, 2365-2379.
Kim, S.-H.; Bowden, N.; Grubbs, R. H. Catalytic ring closing metathesis of dienynes: Construction of fused bicylic rings. J. Am. Chem. Soc. 1994, 116, 10801-10802.
Chang, L.; Jiang, H.; Fu, J.; Li, C.-C.; Yang, Z. Synthesizing the tetracyclic core of nanolobatolide. J. Org. Chem. 2012, 77, 3609-3614.
Knüppel, S.; Rogachev, V. O.; Metz, P. A concise catalytic route to the marine sesquiterpenoids (-)-clavukerin A and (-)-isoclavukerin A. Eur. J. Org. Chem. 2010, 6145-6148.
Schubert, M.; Metz, P. Enantioselective total synthesis of the diterpenes kempene-2, kempene-1, and 3-epi-kempene-1 from the defence secretion of higher termites. Angew. Chem. Int. Ed. 2011, 50, 2954-2956.
Boyer, F.-D.; Hanna, I. Synthesis of the tricyclic core of colchicine via a dienyne tandem ring-closing metathesis reaction. Org. Lett. 2007, 9, 2293-2295.
Honda, T.; Namiki, H.; Kaneda, K.; Mizutani, H. First diastereoselective chiral synthesis of (-)-securinine. Org. Lett. 2004, 6, 87-89.
Honda, T. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions. Chem. Pharm. Bull. 2012, 60, 687-705.
Russian Pharmacopeia, 10th ed.; Ministry of Health of the USSR: Moscow, 1968; pp 612-614.
Gupta, K.; Chakrabarti, A.; Rana, S.; Ramdeo, R.; Roth, B. L.; Agarwal, M. L.; Tse, W.; Agarwal, M. K.; Wald, D. N. Securinine, a myeloid differentiation agent with therapeutic potential for AMI. PLoSONE 2011, 6, e21203.
Leduc, A. B.; Kerr, M. A. Total synthesis of (-)-allosecurinine. Angew. Chem. Int. Ed. 2008, 47, 7945-7948.
González-Gálvez, D.; García-García, E.; Alibés, R.; Bayón, P.; de March, P.; Figueredo, M.; Font, J. Enantioselective Approach to securinega alkaloids. Total synthesis of securinine and (-)-norsecurinine. J. Org. Chem. 2009, 74, 6199-6211.
Dhudshia, B.; Cooper, B. F. T.; Macdonald, C. L. B.; Thadani, A. N. The asymmetric total synthesis of (-)-securinine. Chem. Commun. 2009, 463-465.
Chen, J.-H.; Levine, S. R.; Buergler, J. F.; McMahon, T. C.; Medeiros, M. R.; Wood, J. L. Total syntheses of (±)-securinine and (±)-allosecurinine. Org. Lett. 2012, 14, 4531-4533.
Kress, S.; Weckesser, J.; Schulz, S. R.; Blechert, S. Concise total syntheses of dipiperidine alkaloids virgidivarine and virgiboidine through Ru-mediated ene-ene-yne ring rearrangement metathesis (RRM). Eur. J. Org. Chem. 2013, 1346-1355.
For recent applications of ring-rearrangement metathesis, see: Li, J.; Lee, D. Diastereoselective ring-rearrangement metathesis to set the stereochemistry of all-carbon quaternary centres. Chem. Sci. 2012, 3, 3296-3301.
Cooper, H. D.; Wright, D. L. The tandem ring opening/ring closing metathesis route to oxaspirocycles: An approach to phelligridin G. Molecules 2013, 18, 2438-2448.
Dhara, K.; Midya, G. C.; Dash, J. A diversity-oriented approach to spirocyclic and fused hydantoins via olefin metathesis. J. Org. Chem. 2012, 77, 8071-8082.
Bracegirdle, S.; Anderson, E. A. Recent advances in the use of temporary silicon tethers in metal-mediated reactions. Chem. Soc. Rev. 2010, 39, 4114-4129.
Cusak, A. Temporary silicon-tethered ring-closing metathesis: Recent advances in methodology development and natural product synthesis. Chem. Eur. J. 2012, 18, 5800-5824.
Mukherjee, S.; Lee, D. Application of tandem ring-closing enyne metathesis: Formal total synthesis of (-)-cochleamycin A. Org. Lett. 2009, 11, 2916-2919.
Kim, Y. J.; Lee, D. Synthesis of the entire framework of tartrolon B utilizing a silicon-tethered ring-closing metathesis strategy. Org. Lett. 2006, 8, 5219-5222.
Grimm, J. B.; Otte, R. D.; Lee, D. Tandem dienyne ring-closing metathesis of alkynyl silaketals for the formation of bicyclic siloxanes. J. Organomet. Chem. 2005, 690, 5508-5516.
Marjanovic, J.; Kozmin, S. A. Spirofungin A: Stereoselective synthesis and inhibition of isoleucyl-tRNA synthetase. Angew. Chem. Int. Ed. 2007, 46, 8854-8857.
La Cruz, T. E.; Rychnovsky, S. D. Synthesis of the spirofungin B core by a reductive cyclization strategy. Org. Lett. 2005, 7, 1873-1875.
Shimizu, T.; Satoh, T.; Murakoshi, K.; Sodeoka, M. Asymmetric total synthesis of (-)-spirofungin A and (+)-spirofungin B. Org Lett. 2005, 7, 5573-5576.
Wang, J.; Sun, B.-F.; Cui, K.; Lin, G.-Q. An efficient total synthesis of (-)-epothilone B. Org. Lett. 2012, 14, 6354-6357.
Tony, K. A.; Dabideen, D.; Li, J.; Díaz-Hernández, M. D.; Jiménez-Barbero, J.; Mootoo, D. R. Olefin metathesis-iodoetherification-dehydroiodination strategy for spiroketal subunits of polyether antibiotics. J. Org. Chem. 2009, 74, 7774-7780.
Thomas, C. D.; McParland, J. P.; Hanson, P. R. Divalent and multivalent activation in phosphate triesters: A versatile method for the synthesis of advanced polyol synthons. Eur. J. Org. Chem. 2009, 5487-5500.
Thomas, C. D.; McParland, J. P.; Hanson, P. R. Divalent and multivalent activation in phosphate triesters: A versatile method for the synthesis of advanced polyol synthons. Eur. J. Org. Chem. 2010, 3159.
Venukadasula, P. K. M.; Chegondi, R.; Suryn, G. M.; Hanson, P. R. A phosphate tether-mediated, onepot, sequential ring-closing metathesis/cross-metathesis/chemoselective hydrogenation protocol. Org. Lett. 2012, 14, 2634-2637.
Hanson, P. R.; Chegondi, R.; Nguyen, J.; Thomas, C. D.; Waetzig, J. D.; Whitehead, A. Total synthesis of dolabelide C: A phosphate-mediated approach. J. Org. Chem. 2011, 76, 4358-4370.
Whitehead, A.; McReynolds, M. D.; Moore, J. D.; Hanson, P. R. Multivalent activation in temporary phosphate tethers: A new tether for small molecule synthesis. Org. Lett. 2005, 7, 3375-3378.
Venukadasula, P. K. M.; Chegondi, R.; Maitra, S.; Hanson, P. R. A concise, phosphate-mediated approach to the total synthesis of (-)-tetrahydrolipstatin. Org. Lett. 2010, 12, 1556-1559.
Chegondi, R.; Tan, M. M. L.; Hanson, P. R. Phosphate tether-mediated approach to the formal total synthesis of (-)-salicylihalamides A and B. J. Org. Chem. 2011, 76, 3909-3916.
See also: Chegondi, R.; Maitra, S.; Markley, J. L.; Hanson, P. R. Phosphate-tether-mediated ring-closing metathesis for the preparation of complex 1,3-anti-diol-containing subunits. Chem. Eur. J. 2013, 19, 8088-8093.
Zhou, J.; Magomedov, N. A. Explorations on the asymmetric total synthesis of isoschizogamine. J. Org. Chem. 2007, 72, 3808-3815.
Miura, Y.; Hayashi, N.; Yokoshima, S.; Fukuyama, T. Total synthesis of (-)-isoschizogamine. J. Am. Chem. Soc. 2012, 134, 11995-11997.
Wang, C.-Y.; Chen, A.-N.; Shao, C.-L.; Li, L.; Xu, Y.; Qian, P.-Y. Chemical constituents of soft coral Sarcophyton infundibuliforme from the South China Sea. Biochem. Syst. Ecol. 2011, 39, 853-856.
For a synthetic study of sarcophytonolides, see: Fernandes, R. A.; Ingle, A. B. Synthetic studies on C14 cembranoids: Synthesis of C4-12 fragment of sarcophytonolides E-G and L and C5-11 fragment of sarcophytonolide L. Tetrahedron Lett. 2011, 52, 458-460.
Takamura, H.; Iwamoto, K.; Nakao, E.; Kadota, I. Total synthesis of two possible diastereomers of (+)-sarcophytonolide C and its structural elucidation. Org. Lett. 2013, 15, 1108-1111.
Donohoe, T. J.; Ironmonger, A.; Kershaw, N. M. Synthesis of (-)-(Z)-deoxypukalide. Angew. Chem. Int. Ed. 2008, 47, 7314-7316.
Menche, D.; Hassfeld, J.; Li, J.; Rudolph, S. Total synthesis of archazolid A. J. Am. Chem. Soc. 2007, 129, 6100-6101.
Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. Relay ring-closing metathesis (RRCM): A strategy for directing metal movement throughout olefin metathesis sequences. J. Am. Chem. Soc. 2004, 126, 10210-10211.
Wallace, D. J. Relay ring-closing metathesis-A strategy for achieving reactivity and selectivity in metathesis chemistry. Angew. Chem. Int. Ed. 2005, 44, 1912-1915.
Roethle, P. A.; Chen, I. T.; Trauner, D. Total synthesis of (-)-archazolid B. J. Am. Chem. Soc. 2007, 129, 8960-8961.
Zhao, B.-X.; Wang, Y.; Zhang, D.-M.; Jiang, R.-W.; Wang, G.-C.; Shi, J.-M.; Huang, X.-J.; Chen, W.-M.; Che, C.-T.; Ye, W.-C. Flueggines A and B, two new dimeric indolizidine alkaloids from Flueggea virosa. Org. Lett. 2011, 13, 3888-3891.
Wei, H.; Qiao, C.; Liu, G.; Yang, Z.; Li, C.-C. Stereoselective total syntheses of (-)-flueggine A and (+)-virosaine B. Angew. Chem. Int. Ed. 2013, 52, 620-624.
Grela, K.; Harutyunyan, S.; Michrowska, A. A highly efficient ruthenium catalyst for metathesis reactions. Angew. Chem. Int. Ed. 2002, 41, 4038-4040.
Choi, T.-L.; Grubbs, R. H. Tandem ring-closing metathesis reaction with a ruthenium catalyst containing a N-heterocyclic ligand. Chem. Commun. 2001, 2648-2649.
Zhan, Z.-Y. J. Chinese Patent CN2005100803792, 2005; WO Patent 2007003135, 2007.
Zhao, Z.; Zhan, Z.-Y. J. Development of new ruthenium catalysts for metathesis reactions. Chemistry Today 2006, 24, 8-9.
Hoye, T. R.; Danielson, M. E.; May, A. E.; Zhao, H. Total synthesis of (-)-callipeltoside A. J. Org. Chem. 2010, 75, 7052-7060.
Lee, J.; Parker, K. A. A formal synthesis of (-)-englerin A by relay ring closing metathesis and transannular etherification. Org. Lett. 2012, 14, 2682-2685.
Hoye, T. R.; Jeon, J.; Tennakoon, M. A. Allylmalonate as an activator subunit for the initiation of relay ring-closing metathesis reactions. Angew. Chem. Int. Ed. 2011, 50, 2141-2143.
Fujioka, K.; Yokoe, H.; Yoshida, M.; Shishido, K. Total synthesis of penostatin B. Org. Lett. 2012, 14, 244-247.
Crimmins, M. T.; She, J. Enantioselective total synthesis of (+)-gigantecin: Exploiting the asymmetric glycolate aldol reaction. J. Am. Chem. Soc. 2004, 126, 12790-12791.
Hoye, T. R.; Eklov, B. M.; Jeon, J.; Khoroosi, M. Sequencing of threecomponent olefin metatheses: Total synthesis of either (+)-gigantecin or (+)-14-deoxy-9-oxygigantecin. Org. Lett. 2006, 8, 3383-3386.
Schwartz, K. D.; White, J. D. Synthesis of the cyclohexane core of phomactins and a new route to the bicyclo[9.3.1]pentadecane diterpenoid skeleton. Org. Lett. 2011, 13, 248-251.
McGrath, N. A.; Lee, C. A.; Araki, H.; Brichacek, M.; Njardarson, J. T. An efficient substrate-controlled approach towards hypoestoxide, a member of a family of diterpenoid natural products with an inside-out [9.3.1]bicyclic core. Angew. Chem. Int. Ed. 2008, 47, 9450-9453.
Vougioukalakis, G. C. Removing ruthenium residues from olefin metathesis reaction products. Chem. Eur. J. 2012, 18, 8868-8880.