[en] The GTP-binding proteins RhoA, Cdc42 and Rac1 regulate the organization and turnover of the cytoskeleton and cell-matrix adhesions, structures bridging cells to their support, and translating forces, external or generated within the cell. To investigate the specific requirements of Rho GTPases for biomechanical activities of clonal cell populations, we compared side-by-side stable lines of human fibroblasts expressing constitutively active (CA) RhoA, Cdc42 or Rac1. There was no marked effect of any CA GTPase on cell adhesion to different extracellular matrix proteins. Cell spreading was CA Rho GTPase specific and independent of the extracellular matrix proteins allowing adhesion. Mechanical properties were dramatically restricted by CA RhoA on bi- and in tri-dimensional surroundings, were boosted by CA Rac1 on bi-dimensional surroundings only, and were not or marginally affected by CA Cdc42. In conclusion, the action of Rho GTPases appears to depend on the task cells are performing.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Zhang, Z.-G.; University of Cologne > Center for Biochemistry, Center for Molecular Medecine
Lambert, Charles ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire de Biologie des Tissus Conjonctifs
Servotte, S.; Université de Liège > Département des sciences biomédicales et précliniques > Laboratoire de Biologie des Tissus Conjonctifs
Chometon, G.; University of Cologne > Center for Biochemistry
Eckes, B.; University of Cologne > Department of Dermatology
Krieg, T.; University of Cologne > Department of Dermatology > Center for Biochemistry
Lapiere, C. M.; Laboratoire de Biologie des Tissus Conjonctifs
Nusgens, Betty ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire de Biologie des Tissus Conjonctifs
Aumailley, M.; University of Cologne > Center for Biochemistry, Center for Molecular Medicine
Language :
English
Title :
Effects of constitutively active GTPases on fibroblast behavior.
Hall A. (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509-514
Etienne-Manneville S. and Hall A. (2002) Rho GTPases in cell biology. Nature 420: 629-635
Krengel U., Schlichting L., Scherer A., Schumann R., Frech M., John J. et al. (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62: 539-548
Bishop A. L. and Hall A. (2000) Rho GTPases and their effector proteins. Biochem. J. 348: 241-255
Burridge K. and Wennerberg K. (2004) Rho and Rac take center stage. Cell 116: 167-179.
Ingber D. E. (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59: 575-599
Grinnell F. (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13: 264-269
Humphries M. J., Travis M. A., Clark K. and Mould A. P. (2004) Mechanisms of integration of cells and extracellular matrices by integrins. Biochem. Soc. Trans. 32: 822-825
Ridley A. J. and Hall A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399
Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D. and Hall A. (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401-410
Hotchin N. A. and Hall A. (1995) The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J. Cell Biol. 131: 1857-1865
Chrzanowska-Wodnicka M. and Burridge K. (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133: 1403-1415
Leeuwen F. N. van, Delft S. van, Kain H. E., Kammen R. A. van der and Collard J. G. (1999) Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat. Cell Biol. 4: 242-248
Nobes C. D. and Hall A. (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144: 1235-1244
Raftopoulou M. and Hall A. (2004) Cell migration: Rho GT-Pases lead the way. Dev. Biol. 265: 23-32
Servotte S., Zhang Z.-G., Lambert C. A., Ho T. T. G., Chometon G., Eckes B. et al. (2005) Cytoskeletal modifications induced by stable expression of constitutively active Rho-GT-Pases are compatible with fibroblast survival and proliferation. Protoplasma. in press
Ren X. D., Kiosses W. B. and Schwartz M. A. (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton EMBO J. 18: 578-585
Sander E. E., Klooster J. P. ten, Delft S. van, Kammen R. A. van der and Collard J.G. (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior J. Cell Biol. 147: 1009-1022
El Mourabit H., Müller S., Tunggal L., Paulsson M. and Aumailley M. (2004) Analysis of the adaptor function of the LIM domain-containing protein FHL2 using an affinity chromatography approach. J. Cell. Biochem. 92: 612-625
Tasanen K., Tunggal L., Chometon G., Bruckner-Tuderman L. and Aumailley M. (2004) Keratinocytes from patients lacking collagen XVII display a migratory phenotype. Am. J. Pathol. 164: 2027-2038
Rousselle P. and Aumailley M. (1994) Kalinin is more efficient than laminin in promoting adhesion of primary keratinocytes and some other epithelial cells and has a different requirement for integrin receptors J. Cell Biol. 125: 205-214
Kessler D., Dethlefsen D., Haase I., Plomann M. F. Hirche F., Krieg T. et al. (2001) Fibroblasts in mechanically stressed collagen lattices assume a 'synthetic' phenotype. J. Biol. Chem. 276: 36575-36585
Van Aelst L. and D'Souza-Schorey C. (1997) Rho GTPases and signaling networks. Genes Dev. 11: 2295-2322
Nobes C. D. and Hall A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53-62
Flier A. van der and Sonnenberg A. (2001) Function and interactions of integrins. Cell Tissue Res. 305: 285-298
Arthur W. T. and Burridge K. (2001) RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol. Cell 12: 2711-2720
Danen E. H., Sonneveld P., Brakebusch C., Fässler R. and Sonnenberg A. (2002) The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159: 1071-1086
Moyano J. V., Maqueda A., Casanova B. and Garcia-Pardo A. (2003) α4β1 integrin/ligand interaction inhibits α5β1-induced stress fibers and focal adhesions via down-regulation of RhoA and induces melanoma cell migration. Mol. Biol. Cell. 14: 3699-3715
Malliri A. and Collard J. G. (2003) Role of Rho-family proteins in cell adhesion and cancer. Curr. Opin. Cell Biol. 15: 583-589
Bell E., Ivarsson B. and Merrill C. (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76: 1274-1278
Mayer T., Meyer M., Janning A., Schiedel A. C. and Barnekow A. (1999) A mutant form of the rho protein can restore stress fibers and adhesion plaques in v-src transformed fibroblasts. Oncogene 18: 2117-2128
Michaelson D., Silletti J., Murphy G., D'Eustachio P., Rush M. and Philips M. (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J. Cell Biol. 152: 111-126
Longenecker K., Read P., Lin S. K., Nakamoto R. K. and Derewenda Z. S. (2003) Structure of a constitutively activated RhoA mutant (Q63L) at 1.55 Angstrom resolution. Acta Cryst. D59: 876-880
Kaibuchi K., Kuroda S. and Amano M. (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68: 459-486
Stewart M. and Hogg N. (1996) Regulation of leukocyte integrin function: affinity vs. avidity. J. Cell. Biochem. 61: 554-561
Bazzoni G. and Hemler M. E. (1998) Are changes in integrin affinity and conformation overemphasized? Trends Biochem. Sci. 23: 30-34
Fukata M., Nakagawa M., Kuroda S. and Kaibuchi K. (1999) Cell adhesion and Rho small GTPases J. Cell Sci. 112: 4491-4500
Vasioukhin V., Bauer C., Yin M. and Fuchs E. (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100: 209-219
Kuroda S., Fukata M., Nakagawa M., Fujii K., Nakamura T., Ookubo T. et al. (1998) Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281: 832-835
Tkach V., Bock E. and Berezin, V. (2005) The role of RhoA in the regulation of cell morphology and motility. Cell Motil. Cytoskeleton 61: 21-33
Gutjahr M.C., Rossy J. and Niggli V. (2005) Role of Rho, Rac, and Rho-kinase in phosphorylation of myosin light chain, development of polarity, and spontaneous migration of Walker 256 carcinosarcoma cells. Exp. Cell Res. 308: 422-438
Zhou H.and Kramer R.H. (2005) Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J. Biol. Chem. 280: 10624-10635
Cox E.A., Sastry S.K. and Huttenlocher A. (2001) Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol. Biol Cell. 12: 265-277
Olivo C., Vanni C., Mancini P., Silengo L., Torrisi M.R., Tarone G. et al. (2000) Distinct involvement of cdc42 and RhoA GTPases in actin organization and cell shape in untransformed and Db1 oncogene transformed NIH3T3 cells. Oncogene 19: 1428-1436
Banyard J., Anand-Apte B., Symons M. and Zetter B.R. (2000) Motility and invasion are differentially modulated by Rho family GTPases. Oncogene 19: 580-591
Lee D. J., Ho C. H. and Grinnell F. (2003) LPA-stimulated fibroblast contraction of floating collagen matrices does not require Rho kinase activity or retraction of fibroblast extensions. Exp. Cell Res. 289: 86-94
Olson M. F. (2004) Contraction reaction: mechanical regulation of Rho GTPase. Trends Cell Biol. 14: 111-114
Beningo K. A., Dembo M., Kaverina I., Small J. V. and Wang Y. L. (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153: 881-888