[en] The incorporation efficiency of PTX was higher with the nanoprecipitation technique. The release behavior of PTX exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous release. The in vitro anti-tumoral activity was assessed using the Human Cervix Carcinoma cells (HeLa) by the MTT test and was compared to the commercial formulation Taxol® and to Cremophor® EL. When exposed to 25 µg/ml of PTX, the cell viability was lower for PTX-loaded nanoparticles than for Taxol® (IC50 5.5 vs 15.5 µg/ml). Flow cytometry studies showed that the cellular uptake of PTX-loaded nanoparticles was concentration and time dependent. Exposure of HeLa cells to Taxol® and PTX-loaded nanoparticles induced the same percentage of apoptotic cells. PTX-loaded nanoparticles showed greater tumor growth inhibition effect in vivo on TLT tumor, compared with Taxol®. Therefore, PTX-loaded nanoparticles may be considered as an effective anticancer drug delivery system for cancer chemotherapy.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Danhier, Fabienne; Université catholique de Louvain (UCL) > Unité de Pharmacie Galénique
Lecouturier, Nathalie; Université catholique de Louvain (UCL) > Unité de Pharmacie Galénique
Vroman, Benoît; Université catholique de Louvain (UCL) > Unité de Pharmacie Galénique
Jérôme, Christine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Marchand-Brynaert, Jacqueline; Universté catholique de Louvain (UCL) > Unité de Chimie Organique et Médicinale
Feron, Olivier; Université catholique de Louvain (UCL) > Laboratoire de Pharmacologie et de Thérapeutique
Préat, Véronique; Université catholique de Louvain (UCL) > Unité de Pharmacie Galénique
Language :
English
Title :
Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation
Singla A.K., Garg A., and Aggarwal D. Paclitaxel and its formulation. Int. J. Pharm. 235 (2002) 179-192
Spencer C.M., and Faulds D. Paclitaxel-a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48 5 (1994) 794-847
Schiff P., Fant J., and Horwitz S.B. Promotion of microtubule assembly in vitro by Taxol. Nature 277 (1979) 665-667
Haldar S., Chintapalli J., and Croce C. Taxol-induced BCL-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56 (1996) 1253
Tarr B.D., and Yalkowsky S.H. A new parenteral vehicle for the administration of some poorly soluble anti-cancer drugs. J. Parenter. Sci. Technol. 41 (1987) 31-33
Weiss R.B., Donehower R.C., and Wiernik P.H. Hypersensitivity reactions from Taxol. J. Clin. Oncol. 8 7 (1990) 1263-1268
Yang T., and Choi M.K. Preparation and evaluation of Paclitaxel-loaded PEGylated immunoliposome. J. Control. Release 120 (2007) 169-177
Liggins R.T., and Burt H.M. Paclitaxel-loaded poly(l-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release. Int. J. Pharm. 282 (2004) 61-71
Zhang Z., and Feng S.-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of Paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27 (2006) 4025-4033
Huh K.M., Min H.S., Cheon Lee S., Lee H.J., Kim S., and Park K. A new hydrotopic block copolymer micelle system for aqueous solubilization of Paclitaxel. J. Control. Release 126 (2008) 122-129
Brigger I., Dubernet C., and Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54 (2002) 631-651
Brannon-Peppas L., and Blanchette J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56 (2004) 1649-1659
Sparreboom A., Scripture C.D., Trieu V., Williams P.J., De T., Yang A., Beals B., Figg W.D., Hawkins M., and Desai N. Comparative, preclinical and clinical pharmacokinetics of a Cremophor-free, nanoparticles albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in cremophor (Taxol). Clin. Cancer Res. 11 11 (2005) 4136-4143
Fessi H., Puisieux F., Devissaguet J.Ph., Ammoury N., and Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55 1 (1989) R1-R4
Owens III D.E., and Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307 1 (2006) 93-102
Garinot M., Fiévez V., Pourcelle V., Stoffelbach F., des Rieux A., Plapied L., Theate I., Friechels H., Jérôme Ch., Marchand-Brynaert J., Schneider Y.J., and Préat V. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control. Release 120 (2007) 195-204
Vila A., Gill H., McCallion O., and Alonso M.J. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J. Control. Release 98 (2004) 231-244
Mu L., and Feng S.S. A novel controlled release formulation for the anticancer drug Paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release 86 (2003) 33-48
Zhang Z., and Feng S.-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of Paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27 (2006) 4025-4033
Westedt U., Kalinowski M., Wittmar M., Merdan T., Unger F., Fuchs J., Schäller S., Bakowsky U., and Kissel T. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J. Control. Release 119 (2007) 41-51
Mosmann T. Rapid colorimetry assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55-63
Vroman B., Mazza M., Fernandez M.R., Jérôme R., and Préat V. Copolymers of e{open}-caprolactone and quaternized e{open}-caprolactone as gene carrier. J. Control. Release 118 (2007) 136-144
Vroman B., Ferreira I., Jérôme Ch., and Préat V. PEGylated quaternized copolymer/DNA complexes for gene delivery. Int. J. Pharm. 344 (2007) 88-95
Kroning R., and Lichtenstein A. Taxol can induce phosphorylation of BCL-2 in multiple myeloma cells and potentiate dexamethasone-induced apoptosis. Leuk. Res. 22 3 (1998) 275-286
Fonseca C., Simoes S., and Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 83 (2002) 273-286
Hu Y., Xie J., Tong Y.W., and Wang C.-H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J. Control. Release 118 (2007) 7-17
Raymond E., Hanauske A., and Faivre S. Effects of prolonged versus short-term exposure paclitaxel (Taxol) on human tumor colony-forming units. Anti-Cancer Drugs 8 4 (1997) 379-385
Liebmann J., Cook J.A., and Mitchell J.B. Cremophor EL solvent for Paclitaxel and toxicity. Lancet 342 8884 (1993) 1428
Liebmann J., Cook J.A., Lipschultz C., Teague D., Fisher J., and Mitchell J.B. The influence of Cremophor EL on the cell cycle effects of Paclitaxel (Taxol) in human tumor cell lines. Cancer Chemother. Pharmacol. 33 4 (1994) 331-339
Breuning M., Bauer S., and Goepferich A. Polymers and nanoparticles: intelligent tools for intracellular targeting?. Eur. J. Pharm. Biopharm. 68 (2008) 112-128
des Rieux A., Fievez V., Garinot M., Schneider Y.-J., and Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116 (2006) 1-27
Storm G., Belliot S.O., Daemen T., and Lasic D.D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 17 (1995) 31-48
Basco Z., Everson R.B., and Eliason J.F. The DNA of annexin V-binding apoptotic cell is highly fragmented. Cancer Res. 60 (2000) 4623-4628