How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. A relation between kinetics, morphology and synthesis
Chemical engineering Materials science & engineering
Author, co-author :
Malengreaux, Charline ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Nanomatériaux et interfaces
Léonard, Géraldine ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Nanomatériaux et interfaces
Pirard, Sophie ; Université de Liège - ULiège > Département de chimie appliquée > Ingéniérie électrochimique
Cimieri, Iolanda; Gent University > Department of Solids State Sciences > LumiLab
Lambert, Stéphanie ; Université de Liège - ULiège > Département de chimie appliquée > Ingéniérie électrochimique
Bartlett, John; University of the Sunshine Coast > Faculty of Health, Education and Engineering
Heinrichs, Benoît ; Université de Liège - ULiège > Département de chimie appliquée > Génie chimique - Nanomatériaux et interfaces
Language :
English
Title :
How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. A relation between kinetics, morphology and synthesis
Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151:10-18.
Di Paola A., García-López E., Marcì G., Palmisano L. A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 2012, 211-212:3-29.
Blake D.M. Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air 2001, United State Environmental Protection Agency, Washington, DC.
Zhang W., Xiao X., An T., Song Z., Fu J., Sheng G., Cui M. Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process. J. Chem. Technol. Biotechnol. 2003, 78:788-794.
Black D. Nitrophenols, Ambient Water Quality Criteria 1980, United State Environmental Protection Agency, Washington, DC.
Mills A., LeHunte S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 1997, 108:1-35.
Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis: Fundamentals and Applications 1999, BKC, Inc., Tokyo.
Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32:33-177.
Di Paola A., Augugliaro V., Palmisano L., Pantaleo G., Savinov E. Heterogeneous photocatalytic degradation of nitrophenols. J. Photochem. Photobiol., A 2003, 155:207-214.
Turchi C.S., Ollis D.F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 1990, 122:178-192.
Granados O G., Páez M C.A., Martínez O F., Páez-Mozo E.A. Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensitized with metallophthalocyanines. Catal. Today 2005, 107-108:589-594.
Wang C., Li J., Mele G., Yang G.-M., Zhang F.-X., Palmisano L., Vasapollo G. Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Appl. Catal. B 2007, 76:218-226.
Tasseroul L., Pirard S.L., Lambert S.D., Páez C.A., Poelman D., Pirard J.-P., Heinrichs B. Kinetic study of p-nitrophenol photodegradation with modified TiO2 xerogels. Chem. Eng. J. 2012, 191:441-450.
Zang L., Lange C., Abraham I., Storck S., Maier W.F., Kisch H. Amorphous microporous titania modified with platinum(IV) chloride: a new type of hybrid photocatalyst for visible light detoxification. J. Phys. Chem. B 1998, 102:10765-10771.
Zang L., Macyk W., Lange C., Maier W.F., Antonius C., Meissner D., Kisch H. Visible-light detoxification and charge generation by transition metal chloride modified titania. Chem. - A Eur. J. 2000, 6:379-384.
Braconnier B., Paez C.A., Lambert S., Alié C., Henrist C., Poelman D., Pirard J.P., Cloots R., Heinrichs B. Ag- and SiO2-doped porous TiO2 with enhanced thermal stability. Micropor. Mesopor. Mater. 2009, 122:247-254.
Di Paola A., Marcì G., Palmisano L., Schiavello M., Uosaki K., Ikeda S., Ohtani B. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 2001, 106:637-645.
Rauf M.A., Meetani M.A., Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276:13-27.
Arconada N., Durán A., Suárez S., Portela R., Coronado J.M., Sánchez B., Castro Y. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel. Appl. Catal. B 2009, 86:1-7.
Choi H., Stathatos E., Dionysiou D.D. Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with nonionic surfactants. Thin Solid Films 2006, 510:107-114.
Novotna P., Zita J., Krysa J., Kalousek V., Rathousky J. Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. Appl. Catal. B 2008, 79:179-185.
Malengreaux C.M., Timmermans A., Pirard S.L., Lambert S.D., Pirard J.-P., Poelman D., Heinrichs B. Optimized deposition of TiO2 thin films produced by a non-aqueous sol-gel method and quantification of their photocatalytic activity. Chem. Eng. J. 2012, 195-196:347-358.
Schubert U. Chemical modification of titanium alkoxides for sol-gel processing. J. Mater. Chem. 2005, 15:3701-3715.
S.L. Pirard, C.M. Malengreaux, D. Toye, B. Heinrichs, How to correctly determine the kinetics of a photocatalytic degradation reaction?, Catal. Today (submitted for publication).
Chen D., Ray A.K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension. Water Res. 1998, 32:3223-3234.
Lea J., Adesina A.A. Oxidative degradation of 4-nitrophenol in UV-illuminated titania suspension. J. Chem. Technol. Biotechnol. 2001, 76:803-810.
Bodson C.J., Lambert S.D., Alié C., Cattoen X., Pirard J.P., Bied C., Wong Chi Man M., Heinrichs B. Effects of additives and solvents on the gel formation rate and on the texture of P- and Si-doped TiO2 materials. Micropor. Mesopor. Mater. 2010, 134:157-164.
Patterson A.L. Phys. Rev. 1939, 978.
Kubelka P., Munk F. Ein Beitrag zur Optik der Farbanstriche. J. Appl. Phys. 1931, 12:593-601.
Kubelka P. New contributions to the optics of intensly light-scattering materials. J. Opt. Soc. Am. 1948, 38:448-457.
Escobedo Morales A., Sanchez Mora E., Pal U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S 2007, 53:18-22.
Zita J., Krýsa J., Černigoj U., Lavrenčič-Štangar U., Jirkovský J., Rathouský J. Photocatalytic properties of different TiO2 thin films of various porosity and titania loading. Catal. Today 2011, 161:29-34.
Augugliaro V., Palmisano L., Schiavello M., Sclafani A., Marchese L., Martra G., Miano F. Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion. Appl. Catal. 1991, 69:323-340.
Andreozzi R., Caprio V., Insola A., Longo G., Tufano V. Photocatalytic oxidation of 4-nitrophenol in aqueous TiO2 slurries: an experimental validation of literature kinetic models. J. Chem. Technol. Biotechnol. 2000, 75:131-136.
Montgomery D.C. Design and Analysis of Experiments 1997, John Wiley & Sons Inc, New York. fifth ed.