Article (Scientific journals)
Exploratory data analysis and clustering of multivariate spatial hydrogeological data by means of GEO3DSOM, a variant of Kohonen's Self-Organizing Map
Peeters, Luk; Bacao, R.; Lobo, V. et al.
2007In Hydrology and Earth System Sciences, 11 (4), p. 1309-1321
Peer Reviewed verified by ORBi
 

Files


Full Text
hess-11-1309-2007.pdf
Author postprint (2.03 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
SOM-algorithm; Geo3DSOM; groundwater quality; hydrogeology; multi-variate analysis; neural networks
Abstract :
[en] The use of unsupervised artificial neural network techniques like the self-organizing map (SOM) algorithm has proven to be a useful tool in exploratory data analysis and clustering of multivariate data sets. In this study a variant of the SOM-algorithm is proposed, the GEO3DSOM, capable of explicitly incorporating three-dimensional spatial knowledge into the algorithm. The performance of the GEO3DSOM is compared to the performance of the standard SOM in analyzing an artificial data set and a hydrochemical data set. The hydrochemical data set consists of 131 groundwater samples collected in two detritic, phreatic, Cenozoic aquifers in Central Belgium. Both techniques succeed very well in providing more insight in the groundwater quality data set, visualizing the relationships between variables, highlighting the main differences between groups of samples and pointing out anomalous wells and well screens. The GEO3DSOM however has the advantage to provide an increased resolution while still maintaining a good generalization of the data set.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Peeters, Luk;  KULeuven > Applied Geology and Mineralogy > Hydrogeology & Engineering Geology
Bacao, R.;  Universidade Nova de Lisboa > Instituto Superior de Estatıstica e Gestao de Informaçao
Lobo, V.;  Portuguese Naval Academy > Almada
Dassargues, Alain  ;  Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Language :
English
Title :
Exploratory data analysis and clustering of multivariate spatial hydrogeological data by means of GEO3DSOM, a variant of Kohonen's Self-Organizing Map
Publication date :
2007
Journal title :
Hydrology and Earth System Sciences
ISSN :
1027-5606
eISSN :
1607-7938
Publisher :
Copernicus Publications, Kathlenburg-Lindau, Germany
Volume :
11
Issue :
4
Pages :
1309-1321
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 30 November 2008

Statistics


Number of views
174 (15 by ULiège)
Number of downloads
199 (1 by ULiège)

Scopus citations®
 
37
Scopus citations®
without self-citations
32
OpenCitations
 
32
OpenAlex citations
 
69

Bibliography


Similar publications



Contact ORBi