Poster (Scientific congresses and symposiums)
Opal-CT precipitation in a clayey soil explained by geochemical transport model of dissolved Si (Blégny, Belgium)
Ronchi, Benedicta; Barao, A.L.; Vandevenne, F. et al.
2013Goldschmidt Conference 2013
 

Files


Full Text
Gold2013AbstractVolumep2082.pdf
Publisher postprint (131.71 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
hydrology; dissolved Si export; Opal-CT precipitation; groundwater; geochemical transport model
Abstract :
[en] Opal-CT precipitation controlling dissolved Si export Dissolved Si (DSi) exported by rivers are controlled by geological, hydrological and biological cycle processes [1]. The DSi concentrations measured in a river of an upstream catchment in eastern Belgium (Blégny, Land of Herve) don’t vary seasonally (6.91±0.94mgL-1; n=363). Si concentrations in pore water are often higher and vary more (8.65±3.65mgL-1; n=128). The decrease of DSi along the flowpath of water is due to sink processes, i.e. precipitation, adsorption or uptake by vegetation. As the DSi in the river does not show any seasonal variation, uptake by vegetation can be ruled out [1] whereas precipitation or adsorption can control the DSi drained by the stream water. This hypothesis is confirmed by XRD and DeMaster analysis. At 0.1m depth the soil is constituted of 62% quartz, 7% K-feldspar, 6% plagioclase, 3.2% carbonates, 18.9% Al-clay, 1.47% Kaolinite, 0.63% Chlorite and 0.2% amorphous Si, probably of biogenic origin. At 1.5m depth, the amounts of several minerals (35.8% quartz, 0.6% K-feldspars, 0.9% plagioclase, Al-clay 14.7%) drop drastically. Carbonates, chlorite and kaolinite are absent whereas 40.4% opal-CT appears. The precipitation of opal-CT controls the DSi export of this catchment. Development of geochemical transport model To descripe DSi export from a catchment a geochemical transport model is developped in HP1 which couples the water flux model Hydrus with the geochemical model PHREEQC [2]. Our model is based on the conceptual model developped in [3]. First results show different DSi export dynamics in the unsaturated zone than in the aquifer due to different pCO2 values and varying soil moisture conditions. Further development of the model will help to find out the reason of opal-CT precipitation in this setting. [1]Fulweiler, Nixon (2005) Biogeochemistry 74:115–130. [2] Simunek, Jacques, van Genuchten, Mallants (2006) JAWRA 42:1537-1547. [3] Ronchi et al. (2013). Silicon, 5(1), 115–133.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Ronchi, Benedicta;  Katholieke Universiteit Leuven - KUL > Earth Science and Environment > Hydrogeology
Barao, A.L.;  Universiteit Antwerpen - UA
Vandevenne, F.;  Universiteit Antwerpen - UA
Van Gaelen, N.;  Katholieke Universiteit Leuven - KUL
Verheyen, D.;  Katholieke Universiteit Leuven - KUL
Adriaens, R.;  Katholieke Universiteit Leuven - KUL
Batelaan, Okke;  Flinders University (Australia)
Dassargues, Alain  ;  Université de Liège - ULiège > Département ArGEnCo > Hydrogéologie & Géologie de l'environnement
Struyf, E.;  Universiteit Antwerpen - UA
Diels, Jan;  Katholieke Universiteit Leuven - KUL
Govers, Gerard;  Katholieke Universiteit Leuven - KUL
Language :
English
Title :
Opal-CT precipitation in a clayey soil explained by geochemical transport model of dissolved Si (Blégny, Belgium)
Publication date :
25 August 2013
Event name :
Goldschmidt Conference 2013
Event place :
Firenze, Italy
Event date :
25-30 August 2013
Audience :
International
Funders :
KU Leuven - Katholieke Universiteit Leuven [BE]
Available on ORBi :
since 12 January 2014

Statistics


Number of views
65 (1 by ULiège)
Number of downloads
40 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi