Longuespée, Rémi ✱; Université des Sciences et Technologies de Lille - USTL > Sciences naturelles > Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée
Wisztorski, Maxence
Van Remoortere, Alexandra
Van Zeijl, René
Deelder, André
Salzet, Michel
McDonnell, Liam
Fournier, Isabelle
✱ These authors have contributed equally to this work.
Language :
English
Title :
MALDI mass spectrometry imaging of proteins exceeding 30,000 daltons.
Publication date :
September 2010
Journal title :
Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
McDonnell LA, Heeren RM: Imaging mass spectrometry. Mass Spectrom Rev, 2007; 26: 606-643
Fournier I., Wisztorski M, Salzet M: Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev Proteomics, 2008; 5: 413-424
Reyzer ML, Caprioli RM: MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol, 2007; 11: 29-35
Rubakhin SS, Jurchen JC, Monroe EB, Sweedler JV: Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discov Today, 2005; 10: 823-837
Chaurand P, Norris JL, Cornett DS et al: New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res, 2006; 5: 2889-2900
Chaurand P, Sanders ME, Jensen RA, Caprioli RM: Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol, 2004; 165: 1057-1068
Chaurand P, Schwartz SA, Caprioli RM: Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. Curr Opin Chem Biol, 2002; 6: 676-681
Franck J, Arafah K, Elayed M et al: MALDI IMAGING: State of the art technology in clinical proteomics. Mol Cell Proteomics, 2009; 8(9): 2023-2033
Burnum KE, Cornett DS, Puolitaival SM et al: Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res, 2009; 50(11): 2290-2298
Dreisewerd K, Lemaire R, Pohlentz G et al: Molecular profiling of native and matrix-coated tissue slices from rat brain by infrared and ultraviolet laser desorption/ionization orthogonal time-of-flight mass spectrometry. Anal Chem, 2007; 79: 2463-2471
Woods AS, Wang HY, Jackson SN: A snapshot of tissue glycerolipids. Curr Pharm Des, 2007; 13: 3344-3356
Sugiura Y, Konishi Y, Zaima N et al: Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res, 2009; 50(9): 1776-1788
Murphy RC, Hankin JA, Barkley RM: Imaging of lipid species by MALDI mass spectrometry. J Lipid Res, 2009; 50(Suppl): S317-S322
Grey AC, Chaurand P, Caprioli RM, Schey KL: MALDI Imaging Mass Spectrometry of Integral Membrane Proteins from Ocular Lens and Retinal Tissue. J Proteome Res, 2009; 8: 3278-3283
Leinweber BD, Tsaprailis G, Monks TJ, Lau SS: Improved MALDI-TOF imaging yields increased protein signals at high molecular mass. J Am Soc Mass Spectrom, 2009; 20: 89-95
Cohen SL, Chait BT: Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem, 1996; 68: 31-37
Gilmore IS, Seah MP: Ion detection efficiency in SIMS: dependencies on energy, mass and composition for microchannel plates used in mass spectrometry. Int J Mass Spectrom, 2000; 202: 217-229
Norris JL, Cornett DS, Mobley JA et al: Processing MALDI Mass Spectra to Improve Mass Spectral Direct Tissue Analysis. Int J Mass Spectrom, 2007; 260: 212-221
Redeby T, Roeraade J, Emmer A: Simple fabrication of a structured matrix- assisted laser desorption/ionization target coating for increased sensitivity in mass spectrometric analysis of membrane proteins. Rapid Commun Mass Spectrom, 2004; 18: 1161-1166
Redeby T, Carr H, Bjork M, Emmer A: A screening procedure for the solubilization of chloroplast membrane proteins from the marine green macroalga Ulva lactuca using RP-HPLC-MALDI-MS. Int J Biol Macromol, 2006; 39: 29-36
Lemaire R, Wisztorski M, Desmons A et al: MALDI-MS direct tissue analysis of proteins: Improving signal sensitivity using organic treatments. Anal Chem, 2006; 78: 7145-7153
Seeley EH, Oppenheimer SR, Mi D et al: Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom, 2008; 19: 1069-1077
Schwartz SA, Reyzer ML, Caprioli RM: Direct tissue analysis using matrix- assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom, 2003; 38: 699-708
Ames GF, Nikaido K: Two-dimensional gel electrophoresis of membrane proteins. Biochemistry, 1976; 15: 616-623
Herskovits TT, Jaillet H, Gadegbeku B: On the structural stability and solvent denaturation of proteins. II. Denaturation by the ureas. J Biol Chem, 1970; 245: 4544-4550
Horst MN, Basha SM, Baumbach GA et al: Alkaline urea solubilization, two-dimensional electrophoresis and lectin staining of mammalian cell plasma membrane and plant seed proteins. Anal Biochem, 1980; 102: 399-408
Djidja MC, Francese S, Loadman PM et al: Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics, 2009; 9: 2750-2763
Zhang H, Lin Q, Ponnusamy S et al: Differential recovery of membrane proteins after extraction by aqueous methanol and trifluoroethanol. Proteomics, 2007; 7: 1654-1663
Wang H, Qian WJ, Mottaz HM et al: Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res, 2005; 4: 2397-2403
Redeby T, Emmer A: Membrane protein and peptide sample handling for MS analysis using a structured MALDI target. Anal Bioanal Chem, 2005; 381: 225-232
Chertov O, Biragyn A, Kwak LW et al: Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics, 2004; 4: 1195-1203
Ferro M, Seigneurin-Berny D, Rolland N et al: Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins. Electrophoresis, 2000; 21: 3517-3526
Wang W, Guo T, Rudnick PA et al: Membrane proteome analysis of microdissected ovarian tumor tissues using capillary isoelectric focusing/reversed-phase liquid chromatography-tandem MS. Anal Chem, 2007; 79: 1002-1009
Thompson MR, Chourey K, Froelich JM et al: Experimental Approach for Deep Proteome Measurements from Small-Scale Microbial Biomass Samples. Anal Chem, 2008; 80: 9517-9525
Lemaire R, Menguellet SA, Stauber J et al: Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res, 2007; 6: 4127-4134
Begum FD, Hogdall CK, Kjaer SK et al: The prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) levels in stage III ovarian cancer patients. Anticancer Res, 2004; 24: 1981-1985
Deng X, Hogdall EV, Hogdall CK et al: The prognostic value of pretherapeutic tetranectin and CA-125 in patients with relapse of ovarian cancer. Gynecol Oncol, 2000; 79: 416-419
Hogdall EV, Hogdall CK, Tingulstad S et al: Predictive values of serum tumour markers tetranectin, OVX1, CASA and CA125 in patients with a pelvic mass. Int J Cancer, 2000; 89: 519-523
Lundstrom MS, Hogdall CK, Nielsen AL, Nyholm HC: Serum tetranectin and CA125 in endometrial adenocarcinoma. Anticancer Res, 2000; 20: 3903-3906
Lim R, Ahmed N, Borregaard N et al: Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epitheliomesenchymal transition. Int J Cancer, 2007; 120: 2426-2434
Gericke B, Raila J, Sehouli J et al: Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer, 2005; 5: 133
Rauvala M, Puistola U, Turpeenniemi-Hujanen T: Gelatinases and their tissue inhibitors in ovarian tumors; TIMP-1 is a predictive as well as a prognostic factor. Gynecol Oncol, 2005; 99: 656-663
Diamandis EP, Borgono CA, Scorilas A et al: Immunofluorometric quantification of human kallikrein 5 expression in ovarian cancer cytosols and its association with unfavorable patient prognosis. Tumour Biol, 2003; 24: 299-309
Pedersen N, Schmitt M, Ronne E et al: A ligand-free, soluble urokinase receptor is present in the ascitic fluid from patients with ovarian cancer. J Clin Invest, 2003; 92: 2160-2167
Sier CF, Stephens R, Bizik J et al: The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res, 1998; 58: 1843-1849