Longuespée, Rémi ; Université des Sciences et Technologies de Lille - USTL > Sciences Naturelles > Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée
Lambaudie E, Collinet P, Vinatier D: [Ovarian cancers and CA 125 in 2006]. Gynecol Obstet Fertil, 2006; 34: 254-57
Edwards BK, Brown ML, Wingo PA et al: Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst, 2005; 97: 1407-27
Ardekani AM, Liotta LA, Petricoin EF III: Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev Mol Diagn, 2002; 2: 312-20
Bandera CA, Tsui HW, Mok SC, Tsui FW: Expression of cytokines and receptors in normal, immortalized, and malignant ovarian epithelial cell lines. Anticancer Res, 2003; 23: 3151-57
Conrads TP, Fusaro VA, Ross S et al: High-resolution serum proteomic features for ovarian cancer detection. Endocr Relat Cancer, 2004; 11: 163-78
Conrads TP, Zhou M, Petricoin EF III et al: Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn, 2003; 3: 411-20
Fields MM, Chevlen E: Ovarian cancer screening: a look at the evidence. Clin J Oncol Nurs, 2006; 10: 77-81
Johann DJ Jr, McGuigan MD, Patel AR et al: Clinical proteomics and biomarker discovery. Ann NY Acad Sci, 2004; 1022: 295-305
Kohn EC, Mills GB, Liotta L: Promising directions for the diagnosis and management of gynecological cancers. Int J Gynaecol Obstet, 2003; 83(Suppl.1): 203-9
Rapkiewicz AV, Espina V, Petricoin EF III, Liotta LA: Biomarkers of ovarian tumours. Eur J Cancer, 2004; 40: 2604-12
Petricoin EF, Ardekani AM, Hitt BA et al: Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002; 359: 572-77
Bergen HR III, Vasmatzis G, Cliby WA et al: Discovery of ovarian cancer biomarkers in serum using NanoLC electrospray ionization TOF and FT-ICR mass spectrometry. Dis Markers, 2003; 19: 239-49
Diamandis EP: Proteomic patterns in serum and identification of ovarian cancer. Lancet, 2002; 360: 170; author reply 171
Engwegen JY, Gast MC, Schellens JH, Beijnen JH. Clinical proteomics: searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci, 2006; 27: 251-59
Fung ET, Yip TT, Lomas L et al: Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer, 2005; 115: 783-89
Kikuchi N, Horiuchi A, Osada R et al: Nuclear expression of S100A4 is associated with aggressive behavior of epithelial ovarian carcinoma: an important autocrine/paracrine factor in tumor progression. Cancer Sci, 2006; 97: 1061-69
Rai AJ, Zhang Z, Rosenzweig J et al: Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med, 2002; 126: 1518-26
Xiao Z, Prieto D, Conrads TP et al: Proteomic patterns: their potential for disease diagnosis. Mol Cell Endocrinol, 2005; 230: 95-106
Zhu Y, Wu R, Sangha N et al: Classifications of ovarian cancer tissues by proteomic patterns. Proteomics, 2006; 6: 5846-56
Lemaire R, Menguellet SA, Stauber J et al: Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res, 2007; 6: 4127-34
Deininger SO, Ebert MP, Futterer A et al: MALDI Imaging Combined with Hierarchical Clustering as a New Tool for the Interpretation of Complex Human Cancers. J Proteome Res, 2008; 7(12): 5230-36
Walch A, Rauser S, Deininger SO, Hofler H: MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol, 2008; 130: 421-34
Lemaire R, Wisztorski M, Desmons A et al: MALDI-MS direct tissue analysis of proteins: Improving signal sensitivity using organic treatments. Anal Chem, 2006; 78: 7145-53
Franck J LR, Wisztorski M, Van Remoortere A et al: MALDI mass spectrometry imaging of proteins exceeding 30000 Da. Med Sci Monit, 2010; In press
Holle A, Haase A, Kayser M, Hohndorf J: Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom, 2006; 41: 705-16
Lemaire R, Lucot JP, Collinet P et al: New developments in direct analyses by MALDI mass spectrometry for study ovarian cancer. Mol Cell Proteomics, 2005; 4: S305-8
Stauber J, Lemaire R, Wisztorski M et al: New developments in MALDI imaging mass spectrometry for pathological proteomic studies; Introduction to a novel concept, the specific MALDI imaging. Mol Cell Proteomics, 2006; 5: S247-S49
Lemaire R, Stauber J, Wisztorski M et al: Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag. J Proteome Res, 2007; 6: 2057-67
Krug A, Towarowski A, Britsch S et al: Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol, 2001; 31: 3026-37
Franck J, Arafah K, Barnes A et al: Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting. Anal Chem, 2009; 81: 8193-202
Lemaire R, Tabet JC, Ducoroy P et al: Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem, 2006; 78: 809-19
Fournier I, Wisztorski M, Salzet M: Tissue Imaging Using MALDI Mass Spectrometry: The New Frontier of Histopathology Proteomics Expert Review Proteomics, 2008; 5(3): 413-24
Franck J, Arafah K, Elayed M et al: MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics, 2009; 8: 2023-33
Hibbs K, Skubitz KM, Pambuccian SE et al: Differential gene expression in ovarian carcinoma: identification of potential biomarkers. Am J Pathol, 2004; 165: 397-414
Schweigert FJ: Characterisation of protein microheterogeneity and protein complexes using on-chip immunoaffinity purification-mass spectrometry. Brief Funct Genomic Proteomic, 2005; 4: 7-15
Bengtsson S, Krogh M, Szigyarto CA et al: Large-scale proteomics analysis of human ovarian cancer for biomarkers. J Proteome Res, 2007; 6: 1440-50
Gortzak-Uzan L, Ignatchenko A, Evangelou AI et al: A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatics analyses to identify putative biomarkers. J Proteome Res, 2008; 7: 339-51
Makino E, Sakaguchi M, Iwatsuki K, Huh NH: Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. J Mol Med, 2004; 82: 612-20
Sakaguchi M, Miyazaki M, Sonegawa H et al: PKCalpha mediates TGFbetainduced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. J Cell Biol, 2004; 164: 979-84
Yang Z, Tao T, Raftery MJ et al: Proinflammatory properties of the human S100 protein S100A12. J Leukoc Biol, 2001; 69: 986-94
Giuntoli RL II, Webb TJ, Zoso A et al: Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res, 2009; 29: 2875-84
Yang Y, Fruh K, Ahn K, Peterson PA: In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem, 1995; 270: 27687-94
Kloetzel PM: The proteasome system: a neglected tool for improvement of novel therapeutic strategies? Gene Ther, 1998; 5: 1297-98
Rivett AJ, Gardner RC: Proteasome inhibitors: from in vitro uses to clinical trials. J Pept Sci, 2000; 6: 478-88
Rotem-Yehudar R, Groettrup M, Soza A et al: LMP-associated proteolytic activities and TAP-dependent peptide transport for class 1 MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. J Exp Med, 1996; 183: 499-514
Kuckelkorn U, Ruppert T, Strehl B et al: Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity. J Exp Med, 2002; 195: 983-90
Regad T, Saib A, Lallemand-Breitenbach V et al: PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J, 2001; 20: 3495-505
Delp K, Momburg F, Hilmes C et al: Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplant, 2000; 25(Suppl.2): S88-95
Pudney VA, Leese AM, Rickinson AB, Hislop AD: CD8+ immunodominance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. J Exp Med, 2005; 201: 349-60
Sorem J, Jardetzky TS, Longnecker R: Cleavage and secretion of Epstein-Barr virus glycoprotein 42 promote membrane fusion with B lymphocytes. J Virol, 2009; 83: 6664-72
Sorem J, Longnecker R: Cleavage of Epstein-Barr virus glycoprotein B is required for full function in cell-cell fusion with both epithelial and B cells. J Gen Virol, 2009; 90: 591-95
Elg SA, Mayer AR, Carson LF et al: Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovaria carcinoma. Cancer, 1997; 80: 1448-56
Nosov V, Su F, Amneus M et al: Validation of serum biomarkers for detection of early-stage ovarian cancer. Am J Obstet Gynecol, 2009; 200: 639 e1-5
Kim KD, Lim HY, Lee HG et al: Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation. Biochem Biophys Res Commun, 2005; 338: 1126-36
Liang X, Lin T, Sun G et al: Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. J Leukoc Biol, 2009; 86: 229-35
Leygue E, Snell L, Dotzlaw H et al: Expression of lumican in human breast carcinoma. Cancer Res, 1998; 58: 1348-52
Leygue E, Snell L, Dotzlaw H et al: Lumican and decorin are differentially expressed in human breast carcinoma. J Pathol, 2000; 192: 313-20
Babelova A, Moreth K, Tsalastra-Greul W et al: Biglycan: A danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem, 2009; 284(36): 24035-48
Schaefer L, Babelova A, Kiss E et al: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest, 2005; 115: 2223-33
Salzet M, Capron A, Stefano GB: Molecular crosstalk in host-parasite relationships: schistosome- and leech-host interactions. Parasitol Today, 2000; 16: 536-40
Kitagawa K, Murata A, Matsuura N et al: Epithelial-mesenchymal transformation of a newly established cell line from ovarian adenosarcoma by transforming growth factor-beta1. Int J Cancer, 1996; 66: 91-97
Keshamouni VG, Michailidis G, Grasso CS et al: Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J Proteome Res, 2006; 5: 1143-54
Vergara D, Merlot B, Lucot JP et al: Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett, 2010; 291: 59-66
Woo MM, Alkushi A, Verhage HG et al: Gain of OGP, an estrogen-regulated oviduct-specific glycoprotein, is associated with the development of endometrial hyperplasia and endometrial cancer. Clin Cancer Res, 2004; 10: 7958-64
Woo MM, Gilks CB, Verhage HG et al: Oviductal glycoprotein, a new differentiation-based indicator present in early ovarian epithelial neoplasia and cortical inclusion cysts. Gynecol Oncol, 2004; 93: 315-19
Wahl A, McCoy W, Schafer F et al: T Cell Tolerance for Variability in a Class I HLA Presented Influenza A Virus Epitope. J Virol, 2009; 83(18): 9206-14
Begum FD, Hogdall CK, Kjaer SK et al: The prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) levels in stage III ovarian cancer patients. Anticancer Res, 2004; 24: 1981-85
Deng X, Hogdall EV, Hogdall CK et al: The prognostic value of pretherapeutic tetranectin and CA-125 in patients with relapse of ovarian cancer. Gynecol Oncol, 2000; 79: 416-19
Hogdall EV, Hogdall CK, Tingulstad S et al: Predictive values of serum tumour markers tetranectin, OVX1, CASA and CA125 in patients with a pelvic mass. Int J Cancer, 2000; 89: 519-23
Lundstrom MS, Hogdall CK, Nielsen AL, Nyholm HC: Serum tetranectin and CA125 in endometrial adenocarcinoma. Anticancer Res, 2000; 20: 3903-6
Lim R, Ahmed N, Borregaard N et al: Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epitheliomesenchymal transition. Int J Cancer, 2007; 120: 2426-34
Gericke B, Raila J, Sehouli J et al: Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer, 2005; 5: 133
Rauvala M, Puistola U, Turpeenniemi-Hujanen T: Gelatinases and their tissue inhibitors in ovarian tumors; TIMP-1 is a predictive as well as a prognostic factor. Gynecol Oncol, 2005; 99: 656-63
Diamandis EP, Borgono CA, Scorilas A et al: Immunofluorometric quantification of human kallikrein 5 expression in ovarian cancer cytosols and its association with unfavorable patient prognosis. Tumour Biol, 2003; 24: 299-309
Pedersen N, Schmitt M, Ronne E et al: A ligand-free, soluble urokinase receptor is present in the ascitic fluid from patients with ovarian cancer. J Clin Invest, 1993; 92: 2160-67
Sier CF, Stephens R, Bizik J et al: The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res, 1998; 58: 1843-49