ABBONA, F. & FRANCHINI-ANGELA, M. (1990): Crystallization of calcium and magnesium phosphates from solutions of low concentration. J. Crystal Growth 104, 661-671.
ALBERIUS-HENNING, P., LANDA-CANOVAS, A., LARSSON, A.-K. & LIDIN, S. (1999): Elucidation of the crystal structure of oxyapatite by high-resolution electron microscopy. Acta Crystallogr. B 55, 170-176.
APPLEMAN, D.E. & EVANS, H.T., JR. (1973): Indexing and least-squares refinement of powder diffraction data. U.S. Geol. Surv., Comput. Contrib. 20 (NTIS Doc. PB-216).
BADDIEL, C.B. & BERRY, E.E. (1966): Spectra structure correlations in hydroxy and fluorapatite. Spectrochim. Acta 22, 1407-1416.
BALENZANO, F., DELL'ANNA, L. & DI PIERO, M. (1974): Ricerche mineralogiche su alcuni fosfati rinvenuti nelle grotte di Castellana (Bari): strengite aluminifera, vivianite, taranakite, brushite e idrossiapatite. Rend. Soc. Ital. Mineral. Petrogr. 30, 543-573.
BAUMER, A., CARUBA, R. & GANTEAUME, M. (1990): Carbonate-fluorapatite: mise en évidence de la substitution 2PO43- → SiO44- + SO42- par spectrométrie infrarouge. Eur. J. Mineral. 2, 297-304.
BENOIT, P.H. (1987): Adaptation to microcomputer of the Appleman-Evans program for indexing and least-squares refinement of powder-diffraction data for unit-cell dimensions. Am. Mineral. 72, 1018-1019.
BERRY, E.E. (1967): The structure and composition of some calcium-deficient apatites. J. Inorg. Nucl. Chem. 29, 317-327.
BHATNAGAR, V.M. (1968): Infrared spectra of hydroxyapatite and fluorapatite. Bull. Soc. Chim. France, 1771-1773.
BROPHY, G.P. & NASH, T.J. (1968): Compositional, infrared and X-ray analysis of fossil bone. Am. Mineral. 53, 445-454.
BRUNET, F., ALLAN, D.R., REDFERN, A.T.S., ANGEL, R.J., MILETICH, R., REICHMANN, H.J., SERGENT, J. & HANFLAND, M. (1999): Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur. J. Mineral. 11, 1023-1035.
BURKE, E.A.J. (2008): Tidying up mineral names: an IMA-CNMNC scheme for suffixes, hyphens and diacritical marks. Mineral. Rec. 39, 131-135.
CHRISTOFFERSEN, M.R., CHRISTOFFERSEN, M.R. & KIBALCZYC, W. (1990): Apparent solubilities of two amorphous calcium phosphates and of octacalcium phosphate in the temperature range 30-42°C. J. Crystal Growth 106, 349-354.
CONSTANTINESCU, E., MARINCEA, Ş. & CRǍCIUN, C. (1999): Crandallite in the phosphate association from Cioclovina cave (Şureanu Mts., Romania). In Scientific works by Emil Constantinescu. Mineralogy in the System of Earth Sciences. Imperial College Press, London, U.K. (1-5).
DIACONU, G. & MEDEŞAN, A. (1975): Spéléothèmes de dahllite dans la grotte "Peştera Muierii", Baia de Fier - Roumanie. Trav. Inst. Spéol. "Emile Racovitza" 14, 149-156.
DOROZHKIN, S.V. & EPPLE M. (2002): Die biologische und medizinische Bedeutung von Calciumphosphaten. Angew. Chem. 114, 3260-3277.
DUMITRAŞ D.G., MARINCEA, Ş. & FRANSOLET, A.M. (2004): Brushite in the bat guano deposit from the "dry" Cioclovina Cave (Şureanu Mountains, Romania). Neues Jahrb. Mineral., Monatsh., 45-64.
ELLIOT, J.S., SHARP, R.F. & LEWIS, L. (1959): The effect of the molar Ca/P ratio upon the crystallization of brushite and apatite. J. Phys. Chem. 63, 725-726.
ELLIOTT, J.C. (1994): Structure and Chemistry of the Apatites and the Other Calcium Orthophosphates. Elsevier, Amsterdam, The Netherlands.
ELLIOTT, J.C. (2002): Calcium phosphate biominerals. In Phosphates - Geochemical, Geobiological and Materials Importance (M.L. Kohn, J. Rakovan & J.M. Hughes, eds.). Rev. Mineral. Geochem. 48, 427-454.
FIORE, S. & LAVIANO, R. (1991): Brushite, hydroxylapatite, and taranakite from Apulian caves (southern Italy): new mineralogical data. Am. Mineral. 76, 1722-1727.
FOWLER, B.O. (1973): Infrared studies of apatites. I. Vibrational assignments for calcium, strontium and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 13, 194-207.
FRANCIS, M.D. & WEBB, N.C. (1971): Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calc. Tiss. Res. 6, 335-342.
HUGHES, J.M., CAMERON, M. & CROWLEY, K.D. (1989): Structural variations in natural F, OH and Cl apatites. Am. Mineral. 74, 870-876.
IOSOF, V. & NEACŞU, V. (1980): Analysis of silicate rocks by atomic absorption spectrometry. Rev. Roum. Chim. 25, 589-597.
ISHIKAWA, K., DUCHEYNE, P. & RADIN, S. (1993): Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J. Mater. Sci., Mater. Med. 4, 165-168.
IVANOVA, T.I., FRANK-KAMENETSKAYA O.V., KALTSOV, V. & UGOLKOV, L. (2001): Crystal structure of calcium-deficient carbonated hydroxylapatite. Thermal decomposition. J. Solid State Chem. 160, 340-349.
LEGEROS, R.Z., LEGEROS, J.P., TRAUTZ, O.R. & KLEIN, E. (1970): Spectral properties of carbonate in carbonate-containing apatites. Develop. Appl. Spectrosc. 7 B, 3-12.
LIBOWITZKY, E. (1999): Correlation of O-H stretching frequencies and O-H...O hydrogen bond lengths in minerals. Monatsh. Chem. 130, 1047-1059.
MANDARINO, J.A. (1981): The Gladstone-Dale relationship. IV. The compatibility concept and its application. Can. Mineral. 19, 441-450.
MARINCEA, Ş. & DUMITRAŞ, D. (2003): The occurrence of taranakite in the "dry" Cioclovina Cave (Sureanu Mountains, Romania). Neues Jahrb. Mineral., Monatsh., 127-144.
MARINCEA, Ş. & DUMITRAŞ, D. (2005): First reported sedimentary occurrence of berlinite (AlPO4) in phosphate-bearing sediments from Cioclovina Cave, Romania - Comment. Am. Mineral. 90, 1203-1208.
MARINCEA, Ş., DUMITRAŞ, D. & GIBERT, R. (2002): Tinsleyite in the "dry" Cioclovina Cave (Sureanu Mountains, Romania): the second world occurrence. Eur. J. Mineral. 14, 157-164.
MORTIER, A., LEMAITRE, J. & ROUXHET, P.G. (1989): Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites. Thermochim. Acta 143, 265-282.
NEWESELEY, H. (1963): Kristallchemische und micromorphologische Untersuchungen an Carbonat-Apatiten. Monatsh. Chem. 94, 270-280.
ONAC, B.P., BREBAN, R., KEARNS, J. & TAMAS, T. (2002): Unusual minerals related to phosphate deposits in Cioclovina cave, Sureanu Mountains (Romania). Theor. Appl. Karst. 15, 27-34.
ONAC, B.P., ETTINGER, K., KEARNS, J & BALASZ, I.I. (2005): A modern, guano-related occurrence of foggite, CaAl(PO4) (OH)2•H2O and churchite-(Y), YPO4•2H2O in Cioclovina Cave, Romania. Mineral. Petrol. 85, 291-302.
ONAC, B.P. & WHITE, W.B. (2003): First reported sedimentary occurrence of berlinite (AlPO4) in phosphate-bearing sediments from Cioclovina cave, Romania. Am. Mineral. 88, 1395-1397.
RINAUDO, C. & ABBONA, F. (1988): A contribution to the study of the crystal chemistry of calcium sulfate phosphate hydrate. Mineral. Petrogr. Acta 31, 95-105.
SCHADLER, J. (1929): Mineralogische-petrographische Characteristik der Phosphat-Ablagerung in the Cioclovinahöhle bei Pui. Pub. Muz. Hunedoara 5(27), 1-3.
SCHADLER, J. (1932): Ardealit, ein neues Mineral CaHPO4•CaS O4+4H2O. Zb. Mineral. A, 40-41.
SHAPIRO, L. & BRANNOCK, W.W. (1962): Rapid analysis of silicate, carbonate and phosphate rocks. U.S. Geol. Surv., Bull. 1144-A (A 14-15, A 49-51).
SIMPSON, D.R. (1964): The nature of alkali carbonate apatites. Am. Mineral. 49, 363-376.
TOMUŞ, R.B. (1999): The Karst Complex Ciclovina. The Basin 2063. Proteus, Hunedoara, Romania (in Romanian).
TRUEMAN, C.N. & TUROSS, N. (2002): Trace elements in recent and fossil bone apatite. In Phosphates - Geochemical, Geobiological and Materials Importance (M.L. Kohn, J. Rakovan & J.M. Hughes, eds.). Rev. Mineral. Geochem. 48, 489-522.