data analysis; oceanography; variational analysis; DIVA
Abstract :
[en] A tool for multidimensional variational analysis (divand) is presented. It allows the interpolation and analysis of observations on curvilinear orthogonal grids in an arbitrary high dimensional space by minimizing a cost function. This cost function penalizes the deviation from the observations, the deviation from a first guess and abruptly varying fields based on a given correlation length (potentially varying in space and time). Additional constraints can be added to this cost function such as an advection constraint which forces the analysed field to align with the ocean current. The method decouples naturally disconnected areas based on topography and topology. This is useful in oceanography where disconnected water masses often have different physical properties. Individual elements of the a priori and a posteriori error covariance matrix can also be computed, in particular expected error variances of the analysis. A multidimensional approach (as opposed to stacking 2-dimensional analysis) has the benefit of providing a smooth analysis in all dimensions, although the computational cost is increased.
Primal (problem solved in the grid space) and dual formulations (problem solved in the observational space) are implemented using either direct solvers (based on Cholesky factorization) or iterative solvers (conjugate gradient method). In most applications the primal formulation with the direct solver is the fastest, especially if an a posteriori error estimate is needed. However, for correlated observation errors the dual formulation with an iterative solver is more efficient.
The method is tested by using pseudo observations from a global model. The distribution of the observations is based on the position of the ARGO floats. The benefit of the 3-dimensional analysis (longitude, latitude and time) compared to 2-dimensional analysis (longitude and latitude) and the role of the advection constraint are highlighted. The tool divand is free software, and is distributed under the terms of the GPL license (http://modb.oce.ulg.ac.be/mediawiki/index.php/divand).
Research Center/Unit :
GHER
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Beckers, Jean-Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Alvera Azcarate, Aïda ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Vandenbulcke, Luc; University of Porto > CIIMAR
Language :
English
Title :
divand-1.0: n-dimensional variational data analysis for ocean observations
Alternative titles :
[en] divand
Publication date :
2014
Journal title :
Geoscientific Model Development
ISSN :
1991-959X
eISSN :
1991-9603
Publisher :
Copernicus GmbH
Volume :
7
Pages :
225-241
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
FP7 - 283607 - SEADATANET II - SeaDataNet II: Pan-European infrastructure for ocean and marine data management
Name of the research project :
PREDANTAR, EMODNET Chemistry 2, SeaDataNet II
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Service Public Fédéral de Programmation Politique scientifique DG MARE - Commission Européenne. Direction Générale des Affaires maritimes et de la Pêche CE - Commission Européenne
Commentary :
Code available at http://modb.oce.ulg.ac.be/mediawiki/index.php/Divand
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. R. Meteorol. Soc., 134, 1971-1996, doi:10.1002/qj.340, 2008.
Barth, A., Alvera-Azcárate, A., Troupin, C., Ouberdous, M., and Beckers, J.-M.: A web interface for griding arbitrarily distributed in situ data based on Data-Interpolating Variational Analysis (DIVA), Adv. Geosci., 28, 29-37, doi:10.5194/adgeo-28-29-2010, 2010.
Beckers, J.-M., Barth, A., and Alvera-Azcárate, A.: DINEOF reconstruction of clouded images including error maps - application to the Sea-Surface Temperature around Corsican Island, Ocean Sci., 2, 183-199, doi:10.5194/os-2-183-2006, 2006. (Pubitemid 44600871)
Bennett, A. F., Chua, B. S., and Leslie, L. M.: Generalized inversion of a global numerical weather prediction model, Meteor. Atmos. Phys., 60, 165-178, 1996.
Bennett, A. F., Chua, B., and Leslie, L.: Generalized inversion of a global numerical weather prediction model, II: Analysis and implementation, Meteor. Atmos. Phys., 62, 129-140, doi:10.1007/BF01029698, 1997.
Benzi, M.: Preconditioning Techniques for Large Linear Systems: A Survey, J. Comput. Phys., 182, 418-477, doi:10.1006/jcph.2002.7176, 2002. (Pubitemid 36010064)
Brankart, J.-M. and Brasseur, P.: The general circulation in the Mediterranean Sea: a climatological approach., J. Marine Sys., 18, 41-70, doi:10.1016/S0924-7963(98)00005-0, 1998. (Pubitemid 28560598)
Brankart, J.-M. and Brasseur, P.: Optimal analysis of in situ data in the Western Mediterranean using statistics and cross-validation., J. Atmos. Ocean. Tech., 13, 477-491, doi:10.1175/1520-0426(1996)0130477:OAOISD2.0.CO;2, 1996. (Pubitemid 126544234)
Brasseur, P.: Reconstitution de champs d'observations océanographiques par le Modèle Variationnel Inverse: Méthodologie et Applications., Ph.D. thesis, Universitéde Liège, Collection des publications, Sciences appliquées, Liège, Belgium, 1994.
Brasseur, P. and Haus, J.: Application of a 3-D variational inverse model to the analysis of ecohydrodynamic data in the Northern Bering and Southern Chuckchi Seas., J. Marine Sys., 1, 383-401, doi:10.1016/0924-7963(91)90006-G, 1991.
Brasseur, P., Beckers, J.-M., Brankart, J.-M., and Schoenauen, R.: Seasonal Temperature and Salinity Fields in the Mediterranean Sea: Climatological Analyses of an Historical Data Set., Deep-Sea Res., 43, 159-192, doi:10.1016/0967-0637(96)00012- X, 1996.
Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for objective analysis and design of oceanographic experiment applied to MODE-73., Deep-Sea Res., 23, 559-582, doi:10.1016/0011-7471(76)90001-2, 1976.
Buongiorno Nardelli, B.: A novel approach for the high-resolution interpolation of in situ sea surface salinity, J. Atmos. Ocean. Tech., 29, 867-879, doi:10.1175/JTECH-D-11-00099.1, 2012.
Buongiorno Nardelli, B., Colella, S., Santoleri, R., Guarracino, M., and Kholod, A.: A re-analysis of Black Sea surface temperature, J. Marine Sys., 79, 50-64, doi:10.1016/j.jmarsys.2009.07.001, 2010.
Carrier, M. J. and Ngodock, H.: Background-error correlation model based on the implicit solution of a diffusion equation, Ocean Modell., 35, 45-53, doi:10.1016/j.ocemod.2010.06.003, 2010.
Carton, J. and Hackert, E.: Data assimilation applied to the temperature and circulation in the tropical Atlantic, 1983-84, J. Phys. Oceanogr., 20, 1150-1165, doi:10.1175/1520-0485(1990)0201150:DAATTT2.0.CO;2, 1990.
Chaves, J. C., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco, J., Chalker, A., Warnock, A., and Samsi, S.: Octave and Python: High-level scripting languages productivity and performance evaluation, in: HPCMP Users Group Conference, 2006, 429-434, IEEE, 2006.
Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S.: Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate, ACM Trans. Math. Soft., 35, 22:1-22:14, doi:10.1145/1391989.1391995, 2008.
Chua, B. S. and Bennett, A. F.: An inverse ocean modeling system, Ocean Modell., 3, 137-165, doi:10.1016/S1463-5003(01)00006-3, 2001. (Pubitemid 33632508)
Cohn, S. E., da Silva, A., Guo, J., Sienkiewicz, M., and Lamich, D.: Assessing the effects of data selection with the DAO Physicalspace Statistical Analysis System, Mon. Weather Rev., 126, 2913-2926, 1998. (Pubitemid 128559953)
Courtier, P.: Dual formulation of four-dimensional variational assimilation, Q. J. R. Meteorol. Soc., 123, 2449-2461, doi:10.1002/qj. 49712354414, 1997. (Pubitemid 127605950)
Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for operational implementation of 4D-Var, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 1367-1387, doi:10.1002/qj.49712051912, 1994.
Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., and Fisher, M.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation, Q. J. R. Meteorol. Soc., 124, 1783-1808, doi:10.1002/qj. 49712455002, 1998.
Cullen, M. J. P.: Four-dimensional variational data assimilation: A new formulation of the background-error covariance matrix based on a potential-vorticity representation, Q. J. R. Meteorol. Soc., 129, 2777-2796, doi:10.1256/qj.02.10, 2003. (Pubitemid 37144664)
Daley, R.: Atmospheric Data Analysis, Cambridge University Press, New York, 457 pp., 1991.
Davis, T. A. and Hager, W. W.: Dynamic supernodes in sparse Cholesky update/downdate and triangular solves, ACM Trans. Math. Soft., 35, 27:1-27:23, doi:10.1145/1462173.1462176, 2009.
Dee, D. P. and da Silva, A. M.: The Choice of Variable for Atmospheric Moisture Analysis, Mon. Weather Rev., 131, 155-171, doi:10.1175/1520-0493(2003) 1310155:TCOVFA2.0.CO;2, 2003. (Pubitemid 36906219)
Derber, J. and Rosati, A.: A global oceanic data assimilation system, J. Phys. Oceanogr., 19, 1333-1347, doi:10.1175/1520-0485(1989)0191333:AGODAS2.0. CO;2, 1989.
Dhatt, G. and Touzot, G.: Une présentation de la méthode des éléments finis., in: Collection Universitéde Compiègne, Paris, S. A. Maloine, editor, 1984.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Modell., 22, 89-105, doi:10.1016/j.ocemod.2008.01.004, 2008.
Evensen, G.: Data assimilation: the Ensemble Kalman Filter, Springer, 279 pp., 2007.
Gandin, L. S.: Objective analysis of meteorological fields, Israel Program for Scientific Translation, Jerusalem, 242 pp., 1965.
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723-757, doi:10.1002/qj.49712555417, 1999. (Pubitemid 29247364)
Gauthier, P., Charette, C., Fillion, L., Koclas, P., and Laroche, S.: Implementation of a 3d variational data assimilation system at the Canadian Meteorological Centre, Part I: The global analysis, Atmos.-Ocean, 37, 103-156, doi:10.1080/07055900.1999.9649623, 1999.
Gneiting, T.: Correlation functions for atmospheric data analysis, Q. J. R. Meteorol. Soc., 125, 2449-2464, doi:10.1002/qj.49712555906, 1999. (Pubitemid 30024884)
Golub, G. H. and Van Loan, C. F.: Matrix Computations, Johns Hopkins University Press, Baltimore, 3rd Edn., 1996.
Guinehut, S., Larnicol, G., and Traon, P. L.: Design of an array of profiling floats in the North Atlantic from model simulations, J. Marine Sys., 35, 1-9, doi:10.1016/S0924-7963(02)00042-8, 2002. (Pubitemid 34635322)
Guttorp, P. and Gneiting, T.: Studies in the history of probability and statistics XLIX On the Matérn correlation family, Biometrika, 93, 989-995, doi:10.1093/biomet/93.4.989, 2006. (Pubitemid 44973881)
Haben, S. A., Lawless, A. S., and Nichols, N. K.: Conditioning of incremental variational data assimilation, with application to the Met Office system, Tellus A, 63, 782-792, doi:10.1111/j.1600-0870.2011.00527.x, 2011.
Hayden, C. M., R. J. P.: Recursive Filter Objective Analysis of Meteorological Fields: Applications to NESDIS Operational Processing, J. Appl. Meteor., 34, 3-15, doi:10.1175/1520-0450-34.1.3, 1995.
Høyer, J. L. and She, J.: Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea, J. Marine Sys., 65, 176-189, doi:10.1016/j.jmarsys.2005.03.008, 2007. (Pubitemid 46241810)
Jones, M. T. and Plassmann, P. E.: An improved incomplete Cholesky factorization, ACM Trans. Math. Softw., 21, 5-17, doi:10.1145/200979.200981, 1995.
Kaplan, A., Kushnir, Y., Cane, M., and Blumenthal, M.: Reduced Space Optimal Analysis for Historical Datasets: 136 Years of Atlantic Sea Surface Temperatures, J. Geophys. Res., 102, 27835-27860, doi:10.1029/97JC01734, 1997.
Legler, D. M. and Navon, I. M.: VARIATM-A FORTRAN program for objective analysis of pseudostress wind fields using largescale conjugate-gradient minimization, Comput. Geosci., 17, 1-21, doi:10.1016/0098-3004(91)90077-Q, 1991.
Leros, A., Andreatos, A., and Zagorianos, A.: Matlab-Octave science and engineering benchmarking and comparison, in: Proceedings of the 14th WSEAS international conference on Computers: part of the 14th WSEAS CSCC multiconference, 746-754, 2010.
Lorenc, A. C.: Iterative analysis using covariance functions and filters, Q. J. R. Meteorol. Soc., 118, 569-591, doi:10.1002/qj.49711850509, 1992.
Lorenc, A. C.: Development of an operational variational assimilation scheme, J. Meteor. Soc. Japan, 75, 339-346, 1997. (Pubitemid 127712506)
Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J., and Saunders, F. W.: The Met Office global 3- dimensional variational data assimilation scheme, Q. J. R. Meteorol. Soc., 126, 2991-3012, doi:10.1002/qj.49712657002, 2000. (Pubitemid 32015491)
Lorenzo, E. D., Moore, A. M., Arango, H. G., Cornuelle, B. D., Miller, A. J., Powell, B., Chua, B. S., and Bennett, A. F.: Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system, Ocean Modell., 16, 160-187, doi:10.1016/j.ocemod.2006.08.002, 2007. (Pubitemid 46112385)
Martin, M. J., Hines, A., and Bell, M. J.: Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact, Q. J. R. Meteorol. Soc., 133, 981-995, doi:10.1002/qj.74, 2007. (Pubitemid 47091203)
Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., and Gallée, H.: Modelling the seasonal variability of the Antarctic Slope Current, Ocean Sci., 7, 455-470, doi:10.5194/os-7-455-2011, 2011.
McIntosh, P. C.: Oceanographic data interpolation: Objective analysis and splines, J. Geophys. Res., 95, 13529-13541, doi:10.1029/JC095iC08p13529, 1990.
Mirouze, I. and Weaver, A. T.: Representation of correlation functions in variational assimilation using an implicit diffusion operator, Q. J. R. Meteorol. Soc., 136, 1421-1443, doi:10.1002/qj.643, 2010.
Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., Foley, D., Doyle, J. D., Costa, D., and Robinson, P.: The Regional Ocean Modeling System (ROMS) 4- dimensional variational data assimilation systems: Part II - Performance and application to the California Current System, Prog. Oceanog., 91, 50-73, doi:10.1016/j.pocean.2011.
Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T., and Zavala-Garay, J.: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I - System overview and formulation, Prog. Oceanog., 91, 34-49, doi:10.1016/j.pocean.2011.
Muccino, J. C., Luo, H., Arango, H. G., Haidvogel, D., Levin, J. C., Bennett, A. F., Chua, B. S., Egbert, G. D., Cornuelle, B. D., Miller, A. J., Lorenzo, E. D., Moore, A. M., and Zaron, E. D.: The Inverse Ocean Modeling System. Part II: Applications, J. Atmos. Ocean. Tech., 25, 1623-1637, doi:10.1175/2008JTECHO522.1, 2008.
Nelder, J. A. and Mead, R.: A simplex method for function minimization, Comput. J., 7, 308-313, doi:10.1093/comjnl/7.4.308, 1965.
Nerger, L., Janjíc, T., Schröter, J., and Hiller, W.: A regulated localization scheme for ensemble-based Kalman filters, Q. J. R. Meteorol. Soc., 138, 802-812, doi:10.1002/qj.945, 2012.
Purser, R., Wu, W.-S., Parish, D., and Roberts, N.: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: spatially inhomogeneous and anisotropic covariances, Mon. Weather Rev., 131, 1524-1535, doi:10.1175//2543.
1, 2003a.Purser, R. J.,Wu,W.-S., Parrish, D. F., and Roberts, N. M.: Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances, Mon. Weather Rev., 131, 1524-1535, doi:10.1175//1520-0493(2003) 1311524:NAOTAO2.0.CO;2, 2003b. (Pubitemid 37124286)
Rabier, F. and Courtier, P.: Four-dimensional assimilation in the presence of baroclinic instability, Q. J. R. Meteorol. Soc., 118, 649-672, doi:10.1002/qj.49711850604, 1992. (Pubitemid 23375502)
Rabier, F., Jarvinen, H., Klinker, E., Mahfouf, J.-F., and Simmons, A.: The ECMWF operational implementation of fourdimensional variational assimilation. I: Experimental results with simplified physics, Q. J. R. Meteorol. Soc., 126, 1143-1170, doi:10.1002/qj.49712656415, 2000. (Pubitemid 30309377)
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670, 2003.
Roberts-Jones, J., Fiedler, E. K., and Martin, M. J.: Daily, Global, High-Resolution SST and Sea Ice Reanalysis for 1985-2007 Using the OSTIA System, J. Climate, 25, 6215-6232, doi:10.1175/JCLI-D-11-00648.1, 2012.
Robinson, A. R.: Physical processes, field estimation and an approach to interdisciplinary ocean modeling, Earth-Sci. Rev., 40, 3-54, doi:10.1016/0012-8252(95)00030-5, 1996.
Troupin, C., Machin, F., Ouberdous, M., Sirjacobs, D., Barth, A., and Beckers, J.-M.: High-resolution Climatology of the North-East Atlantic using Data-Interpolating Variational Analysis (Diva), J. Geophys. Res., 115, C08005, doi:10.1029/2009JC005512, 2010.
Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J.- M., Brasseur, P., Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A., Lenartz, F., Toussaint, M.-E., and Beckers, J.-M.: Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (DIVA), Ocean Modell., 52-53, 90-101, doi:10.1016/j.ocemod.2012.05.002, 2012.
Štajner, I., Riishøjgaard, L. P., and Rood, R. B.: The GEOS ozone data assimilation system: Specification of error statistics, Q. J. R. Meteorol. Soc., 127, 1069-1094, doi:10.1002/qj.49712757320, 2001. (Pubitemid 32403738)
Wahba, G.: Spline models for observational data, vol. 59 of CBMNSF Regional Conference Series in Applied Mathematics, SIAM J. Appl. Math., Philadelphia, PA, 169 pp., 1990.
Wahba, G. and Wendelberger, J.: Some new mathematical methods for variational objective analysis using splines and cross validation., Mon. Weather Rev., 108, 1122-1143, doi:10.1175/1520-0493(1980)1081122:SNMMFV2.0.CO;2, 1980.
Weaver, A. T. and Courtier, P.: Correlation modelling on the sphere using a generalized diffusion equation, Q. J. R. Meteorol. Soc., 127, 1815-1842, doi:10.1002/qj.49712757518, 2001.
Weaver, A. T. and Mirouze, I.: On the diffusion equation and its application to isotropic and anisotropic correlation modelling in variational assimilation, Q. J. R. Meteorol. Soc., 139, 242-260, doi:10.1002/qj.1955, 2013.
Weaver, A. T., Vialard, J., and Anderson, D. L. T.: Threeand Four-Dimensional Variational Assimilation with a General Circulation Model of the Tropical Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency Checks, Mon. Weather Rev., 131, 1360-1378, doi:10.1175/1520- 0493(2003)1311360:TAFVAW2.0.CO;2, 2003. (Pubitemid 36953817)
Yaremchuk, M. and Sentchev, A.: Mapping radar-derived sea surface currents with a variational method, Cont. Shelf Res., 29, 1711-1722, doi:10.1016/j.csr.2009.05.016, c09009, 2009.
Yari, S., Kova?cevíc, V., Cardin, V., Ga?cíc, M., and Bryden, H. L.: Direct estimate of water, heat, and salt transport through the Strait of Otranto, J. Geophys. Res., 117, C09009 doi:10.1029/2012JC007936, 2012.
Zaron, E. D., Chavanne, C., Egbert, G. D., and Flament, P.: Baroclinic tidal generation in the Kauai Channel inferred from highfrequency radio Doppler current meters, Dyn. Atmos. Oceans, 48, 93-120, doi:10.1016/j.dynatmoce.2009.03. 002, 2009.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.