[en] Polylactides (PLA), biodegradable aliphatic polyesters, produced solely from renewable resources may substitute petrochemically based polymers in a broad range of applications in the near future, if we manage to produce them at lower cost and higher efficiency as nowadays. Possible applications include food packaging for meat and soft drinks, films for agro-industry and non-wovens in hygienic products. The authors developed, based on a new catalytic system, a reactive extrusion polymerisation process, which can be used to produce PLA continuously in larger quantities and at lower costs than before. This extrusion polymerisation process has been developed and tested with laboratory scale machines and the possibilities to extend this polymerisation process to lactide based blockcopolymers have been investigated.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Jacobsen, Sven; Institut für Kunststofftechnologie, Universität Stuttgart, Germany
Fritz, Hans-Gerhard; Institut für Kunststofftechnologie, Universität Stuttgart, Germany
Degée, Philippe; University of Mons-Hainaut (UMH) > Laboratory of Polymeric and Composite Materials (SMPC)
Dubois, Philippe; University of Mons-Hainaut (UMH) > Laboratory of Polymeric and Composite Materials (SMPC)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
New developments on the ring opening polymerisation of polylactide
Anderlik, R., (1994) Herstellung Thermoplastischer Elastomere Auf der Basis Silanvernetzter Polypropylen/Ethylen-Propylen-Elastomer-mischungen, , PhD-thesis, IKT, University of Stuttgart
Conn, J., Oyasu, R., Welsh, M., Beal, J.M., (1974) Amer. J. Surg., 128, p. 19
Degée, Ph., Dubois, Ph., Jérôme, R., Jacobsen, S., Fritz, H.G., (1998) J. Polym. Sci. Polym. Chem., , submitted
Fritz, H.G., Jacobsen, S., Degée, Ph., Dubois, Ph., Jérôme, R., (1996) DE, 196 (284), p. 724
Gilding, D.K., (1982) Biocompatibility of Clinic Implant Materials, p. 9. , D.F. Williams. Boca Raton: CRC Press
Gogolewski, S., Janovoic, M., Perren, S.M., Dillon, J.G., Hughes, M.K., (1993) Poly. Degrad. Stab., 40, p. 313
Goyert, W., Grimm, W., Awater, M., (1985) Thermoplastische Chemiewerkstoffe und Verfahren Zu Ihrer Herstellung, , Bayer AG, Leverkusen, DE-OS 2854406
Hakola, J.S., Industrial Business Oportunities for Poly(Lactic Acid) Biopolymers as a Non-food Application of Agricultural Production in Europe (1997) Renewable Bioproducts-Evaluating the Current Status in Industrial Markets and Research, , EUR 18034 EN
Heller, J., (1985) CRC Crit. Rev Ther. Drug Carrier Syst., 1, p. 39
Kricheldorf, H.R., Berl, M., Scharnagl, N., (1988) Macromolecules, 21, p. 286
Löfgren, A., Albertsson, A.C., Dubois, Ph., Jérôme, R., (1995) J. Macromol. Sci. Rev. Macromol. Chem. Phys., 35, p. 379
Narayan, R., Biomass (renewable) resources for production of materials, chemicals and fuels - A paradigm shift (1992) Emerging Technologies for Materials and Chemicals from Biomass, ACS Symp. Ser., 476, p. 1. , In: Rowell, R.M., Schultz, T.P., Narayan, R. (Eds.)
Schmitt, E.E., Polistina, R.A., 1967. US Patent 3,297,033
Sinclair, R.G., (1996) J. Macromol. Sci. Pure Appl. Chem., 33, p. 585
Sneller, J.A., (1985) Mod. Plastics Intl., 8, pp. 42-46
Stevels, W.M., Bernard, A., Van De Witte, P., Dijkstra, P.J., Feijen, J., (1996) J. Appl. Polymer Sci., 62, pp. 1295-1301
Stuber, N.P., Tirrell, M., (1985) Polymer Process Eng., 3, pp. 71-83
Södergard, A., Näsman, J.H., (1995) Polymer Degrad. Stab., 46, p. 25