scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Lourenço, P. B., de Borst, R., and Rots, J. G., A plane stress softening plasticity model for orthotropic materials. Int. J. Numer. Methods Eng. 40(21):4033-4057, 1997.
Berto, L., Saetta, A., Scotta, R., and Vitaliani, R., An orthotropic damage model for masonry structures. Int. J. Numer. Methods Eng. 55:127-157, 2002.
Brasile, S., Casciaro, R., and Formica, F., Multilevel approach for brick masonry walls, Part I. A numerical strategy for the nonlinear analysis. Comput. Method Appl. Mech. Eng. 196:4934-4951, 2007.
Brasile, S., Casciaro, R., and Formica, F., Multilevel approach for brick masonry walls, Part II. On the use of equivalent continua. Comput. Method Appl. Mech. Eng. 196:4801-4810, 2007.
Ibrahimbegovic, A., and Markovic, D., Strong coupling methods in multi-phase and multiscale modeling of inelastic behavior of heterogeneous structures Comput. Method Appl. Mech. Eng. 192(28-30):3089-3107, 2003.
Markovic, D., and Ibrahimbegovic, A., On micromacro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials. Comput. Method Appl. Mech. Eng. 193(48-51):5503-5523, 2004.
Feyel, F., and Chaboche, J. L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183:309-330, 2000.
Smit, R. J. M., Brekelmans, W. A. M., and Meijer, H. E. H., Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155:181-192, 1998.
Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., An approach to micromacro modeling of heterogeneous materials. Comput. Mech. 2001. 27:37-48, 2001.
Ozdemir, I., Brekelmans, W. A. M., and Geers, M. G. D., Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73:185-204, 2008.
Ozdemir, I., Brekelmans, W. A. M., and Geers, M. G. D., FE2 Computational Homogenization for the Thermo-mechanical Analysis of Heterogeneous Solids. Comput. Methods Appl. Mech. Eng. 198(3-4):602-613, 2008.
Luciano, R., and Sacco, E., Homogenization technique and damage model for old masonry material. Int. J. Solids Struct. 34(24):3191-3208, 1997.
Luciano, R., and Sacco, E., A damage model for masonry structures. Eur. J. Mech. A/Solids. 17(2):285-303, 1998.
Belytschko, T., Loehnert, S., and Song, J. H., Multiscale aggregating discontinuities: A method for circumventing loss of material stability. Int. J. Numer. Methods Eng. 73:869-894, 2008.
Massart, T. J., Peerlings, R. H. J., and Geers, M. G. D., An enhanced multi-scale approach for masonry wall computations with localization of damage. Int. J. Numer. Methods Eng. 69:1022-1059, 2007.
Armero, F., Large-scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate-dependent inelastic solids. Mech. Cohes-Frict. Mater. 4:101-131, 1999.
Lourenço, P. B., and Rots, J. G., Multisurface interface model for analysis of masonry structures. J. Eng. Mech. ASCE. 123:660-668, 1997.
Massart, T. J., Peerlings, R. H. J., Geers, M. G. D., and Gottcheiner, S., Mesoscopic modeling of failure in brick masonry accounting for three-dimensional effects. Eng. Fract. Mech. 72:1238-1253, 2005.
Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Struct., 32(2):137-163, 1995.
Pande, G. N., Liang, J. X., and Middleton, J., Equivalent elastic moduli for brick masonry. Comput. Geotech. 8:243-265, 1989.
Zeman, J., and Sejnoha, M., From random microstructures to representative volume elements. Mod. Simul. Mater. Sci. Eng. 15:S325-S335, 2007.
Pegon, P., and Anthoine, A., Numerical strategies for solving continuum damage problems with softening: application to the homogenization of masonry. Comput. Struct. 64:623-642, 1997.
Anthoine, A., Homogenization of periodic masonry: plane stress, generalized plane strain or three-dimensional modelling? Comm. Numer. Methods Eng. 13:319-326, 1997.
Massart, T. J., Peerlings, R. H. J., and Geers, M. G. D., Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry. Eur. J. Mech. A/Solids 2004. 23:719-735, 2004.
Rice, J. R., The localization of plastic deformations. In: Koiter,W. T., editor. Theoretical and Applied Mechanics. North-Holland, 1976.
Rice, J. R., and Rudnicki, J. W., A note on some features of the theory of localization of deformation. Int. J. Solids Struct. 16:597-605, 1980.
de Borst, R., Sluys, L. J., Muhlhaus, H. B., and Pamin, J., Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10:99-121, 1993.
Massart, T. J., Multiscale Modeling of Damage in Masonry Structures. Ph.D. Thesis, Eindhoven University of Technology & Universite Libre de Bruxelles, 2003.
Mercatoris, B. C. N., Bouillard, P., and Massart, T. J., Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Eng. Fract. Mech. 76(4):479-499, 2009.
de Borst, R.,Wells, G. N., and Sluys, L. J., Some observations on embedded discontinuity models. Eng. Comput. 18(1-2):241-254, 2001.
Lourenço, P. B., Computational Strategies for Masonry Structures. Ph.D. Thesis, Delft University of Technology, 1996.
Milani, G., Lourenço, P. B., and Tralli, A., Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Comput. Struct. 84:166-180, 2006.
Mercatoris, B. C. N., and Massart, T. J., A computational homogenisation based multi-scale scheme for the failure of thin shells, 2009.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.