Lourenço, P. B., de Borst, R., and Rots, J. G., A plane stress softening plasticity model for orthotropic materials. Int. J. Numer. Methods Eng. 40(21):4033-4057, 1997.
Berto, L., Saetta, A., Scotta, R., and Vitaliani, R., An orthotropic damage model for masonry structures. Int. J. Numer. Methods Eng. 55:127-157, 2002.
Brasile, S., Casciaro, R., and Formica, F., Multilevel approach for brick masonry walls, Part I. A numerical strategy for the nonlinear analysis. Comput. Method Appl. Mech. Eng. 196:4934-4951, 2007.
Brasile, S., Casciaro, R., and Formica, F., Multilevel approach for brick masonry walls, Part II. On the use of equivalent continua. Comput. Method Appl. Mech. Eng. 196:4801-4810, 2007.
Ibrahimbegovic, A., and Markovic, D., Strong coupling methods in multi-phase and multiscale modeling of inelastic behavior of heterogeneous structures Comput. Method Appl. Mech. Eng. 192(28-30):3089-3107, 2003.
Markovic, D., and Ibrahimbegovic, A., On micromacro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials. Comput. Method Appl. Mech. Eng. 193(48-51):5503-5523, 2004.
Feyel, F., and Chaboche, J. L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183:309-330, 2000.
Smit, R. J. M., Brekelmans, W. A. M., and Meijer, H. E. H., Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155:181-192, 1998.
Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., An approach to micromacro modeling of heterogeneous materials. Comput. Mech. 2001. 27:37-48, 2001.
Ozdemir, I., Brekelmans, W. A. M., and Geers, M. G. D., Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73:185-204, 2008.
Ozdemir, I., Brekelmans, W. A. M., and Geers, M. G. D., FE2 Computational Homogenization for the Thermo-mechanical Analysis of Heterogeneous Solids. Comput. Methods Appl. Mech. Eng. 198(3-4):602-613, 2008.
Luciano, R., and Sacco, E., Homogenization technique and damage model for old masonry material. Int. J. Solids Struct. 34(24):3191-3208, 1997.
Luciano, R., and Sacco, E., A damage model for masonry structures. Eur. J. Mech. A/Solids. 17(2):285-303, 1998.
Belytschko, T., Loehnert, S., and Song, J. H., Multiscale aggregating discontinuities: A method for circumventing loss of material stability. Int. J. Numer. Methods Eng. 73:869-894, 2008.
Massart, T. J., Peerlings, R. H. J., and Geers, M. G. D., An enhanced multi-scale approach for masonry wall computations with localization of damage. Int. J. Numer. Methods Eng. 69:1022-1059, 2007.
Armero, F., Large-scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate-dependent inelastic solids. Mech. Cohes-Frict. Mater. 4:101-131, 1999.
Lourenço, P. B., and Rots, J. G., Multisurface interface model for analysis of masonry structures. J. Eng. Mech. ASCE. 123:660-668, 1997.
Massart, T. J., Peerlings, R. H. J., Geers, M. G. D., and Gottcheiner, S., Mesoscopic modeling of failure in brick masonry accounting for three-dimensional effects. Eng. Fract. Mech. 72:1238-1253, 2005.
Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Struct., 32(2):137-163, 1995.
Pande, G. N., Liang, J. X., and Middleton, J., Equivalent elastic moduli for brick masonry. Comput. Geotech. 8:243-265, 1989.
Zeman, J., and Sejnoha, M., From random microstructures to representative volume elements. Mod. Simul. Mater. Sci. Eng. 15:S325-S335, 2007.
Pegon, P., and Anthoine, A., Numerical strategies for solving continuum damage problems with softening: application to the homogenization of masonry. Comput. Struct. 64:623-642, 1997.
Anthoine, A., Homogenization of periodic masonry: plane stress, generalized plane strain or three-dimensional modelling? Comm. Numer. Methods Eng. 13:319-326, 1997.
Massart, T. J., Peerlings, R. H. J., and Geers, M. G. D., Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry. Eur. J. Mech. A/Solids 2004. 23:719-735, 2004.
Rice, J. R., The localization of plastic deformations. In: Koiter,W. T., editor. Theoretical and Applied Mechanics. North-Holland, 1976.
Rice, J. R., and Rudnicki, J. W., A note on some features of the theory of localization of deformation. Int. J. Solids Struct. 16:597-605, 1980.
de Borst, R., Sluys, L. J., Muhlhaus, H. B., and Pamin, J., Fundamental issues in finite element analyses of localization of deformation. Eng. Comput. 10:99-121, 1993.
Massart, T. J., Multiscale Modeling of Damage in Masonry Structures. Ph.D. Thesis, Eindhoven University of Technology & Universite Libre de Bruxelles, 2003.
Mercatoris, B. C. N., Bouillard, P., and Massart, T. J., Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Eng. Fract. Mech. 76(4):479-499, 2009.
de Borst, R.,Wells, G. N., and Sluys, L. J., Some observations on embedded discontinuity models. Eng. Comput. 18(1-2):241-254, 2001.
Lourenço, P. B., Computational Strategies for Masonry Structures. Ph.D. Thesis, Delft University of Technology, 1996.
Milani, G., Lourenço, P. B., and Tralli, A., Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Comput. Struct. 84:166-180, 2006.
Mercatoris, B. C. N., and Massart, T. J., A computational homogenisation based multi-scale scheme for the failure of thin shells, 2009.