Agrebaoui, B., and N. Ben Fraj. "On the cohomology of the lie superalgebra of contact vector fields on S1|1." Bulletin de la societe Royale des Sciences de Liège 72, no. 6 (2003): 365-75.
Aoki, K. "Heat kernels and super determinants of Laplace operators on super Riemann surfaces." Communications in Mathematical Physics 117, no, 3 (1988): 405-29.
Barge, J., and E. Ghys. "Cocycles d'Euler et de Maslov." Mathematische Annalen 294, no. 2 (1992): 235-65.
Cartan, E. Leçons sur la théorie des espaces à connexion projective. Paris: Gauthier s-Villars, 1937.
J. D. Cohn. "N = 2 super-Riemann surfaces." Nuclear Physics B 284, no. 2 (1987): 349-64.
Deligne, P., and J. W. Morgan. "Notes on supersymmetry (following J. Bernstein)." In Quantum Fields and Strings: A Course for Mathematicians, 41-97. Vol. 1-2. Providence, RI: American Mathematical Society, 1999.
D'Hoker, E., and D. H. Phong. "The geometry of string perturbation theory." Reviews of Modern Physics 60, no. 4 (1988): 917-1065.
Duval, C., and L. Guieu. "The Virasoro group and Lorentzian surfaces: The hyperboloid of one sheet." Journal of Geometry and Physics 33 (2000): 103-27.
Feigin, B. L., and D. A Leites. "New Lie superalgebras of string theories." In Group Theoretical Methods in Physics, 623-9. Vol. 1-3. Newark, NJ: Harwood Academic, 1985.
Friedan, D. "Notes on string theory and two-dimensional conformal field theory." In Proceedings of Santa Barbara Workshop on Unified String Theories, edited by M. B. Green and D. Gross, 162-213. Singapore, Singapore: World Scientific, 1986.
Fuks, D. B. Cohomology of'Infinite-Dimensional Lie Algebras. NewYork: Consultants Bureau, 1987.
Gargoubi, H., N. Mellouli, and V. Ovsienko. "Differential operators on supercircle: Conformally equivariant quantization and symbol calculus." Letters in Mathematical Physics 79 (2007): 51-65.
Ghys, E. "Groups acting on the circle." Enseignement des Mathematiques 47, no. 3-4 (2001): 329-407.
Giddings, S. B. "Punctures on super Riemann surfaces." Communications in Mathematical Physics 143, no. 2 (1992): 355-70.
Gieres, F., and S. Theisen. "Superconformally covariant operators and super-W-algebras." Journal of Mathematical Physics 34, no. 12 (1993): 5964-85.
Grozman, P., D. Leites, and I. Shchepochkina. "Lie superalgebras of string theories." Acta Mathematica Vietnamica 26, no. 1 (2001): 27-63.
Guieu, L., and C. Roger. L'algèbre et le Groupe de Virasoro. Montreal, QC, Canada: Les Publications du CRM, 2007.
Kostant, B. Graded Manifolds, Graded Lie Theory, and Prequantization, 177-306. Lecture Notes in Mathematics 570. Berlin: Springer, 1975.
Kostant, B., and S. Sternberg. "The Schwartzian derivative and the conformal geometry of the Lorentz hyperboloid." In Quantum Theories and Geometry, edited by M. Cahen and M. Flato, 113-25. Dordrecht, the Netherlands: Kluwer Academic, 1988.
Leites, D. A. "Introduction to the theory of supermanifolds." Russian Mathematical Surveys 35, no. 1 (1980): 1-64.
Manin, Yu. Gauge Field Theory and Complex Geometry. Grundlehren der Mathematischen Wissenschaften 289. Berlin: Springer, 1988.
Manin, Yu. Topics in Noncommutative Geometry. Princeton, NJ: Princeton University Press, 1991.
Nelson, P. "Lectures on supermanifolds and strings." In Particles, Strings and Supernovae, 997-1073. Vol. 1-2. Teaneck, NJ: World Sci. Publ., 1989.
Ovsienko, V., and C., Roger. "Generalization of Virasoro group and Virasoro algebra through extensions by modules of tensor-densities on S 1." Indagationes Mathematicae New Series 9, no. 2 (1998): 277-88.
Ovsienko, V., and S. Tabachnikov. Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology ofDiffeomorphism Groups. Cambridge, MA: Cambridge University Press, 2005.
Radul, A. O. "Superanalogue of Schwarz derivations and Bott cocycles." Reports of the Department of Mathematics, University of Stockholm, no. 21 (1986): 40-57.
Radul, A. O. "Superstring Schwartz derivative and the Bott cocycle." In Integrable and Superintegrable Systems, 336-51. Singapore, Singapore: World Scientific, 1990.
Rogers, A. Supermanifolds: Theory and Applications. Hackensack, NJ: World Scientific, 2007.
Souriau, J.-M. Structure of Dynamical Systems: a Symplectic View of Physics. Translated by C. H. Cushman-de Vries. Boston, MA: Birkhäuser, 1997.
Tuynman, G. M. Supermanifolds and Supergroups: Basic Theory. Mathematics and its Applications 570, Dordrecht, the Netherlands: Kluwer Academic, 2004.
Uehara, S., and Y. Yasui. "The Weil-Petersson Kähler form on the super Teichmüller space." Physics Letters B 250, no. 1-2 (1990): 72-8.