[en] Enhancement of ocean alkalinity using calcium compounds, e.g., lime has been proposed to mitigate further increase of atmospheric CO2 and ocean acidification due to anthropogenic CO2 emissions. Using a global model, we show that such alkalinization has the potential to preserve pH and the saturation state of carbonate minerals at close to today's values. Effects of alkalinization persist after termination: Atmospheric CO2 and pH do not return to unmitigated levels. Only scenarios in which large amounts of alkalinity (i.e., in a ratio of 2:1 with respect to emitted CO2) are added over large ocean areas can boost oceanic CO2 uptake sufficiently to avoid further ocean acidification on the global scale, thereby elevating some key biogeochemical parameters, e.g., pH significantly above preindustrial levels. Smaller-scale alkalinization could counteract ocean acidification on a subregional or even local scale, e.g., in upwelling systems. The decrease of atmospheric CO2 would then be a small side effect.
Research Center/Unit :
Laboratoire de Physique Atmosphérique et Planétaire
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ilyina, Tatiana
Wolf-Gladrow, Dieter
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Heinze, Christoph
Language :
English
Title :
Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification
Publication date :
2013
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Archer, D., (2005), Fate of fossil fuel CO2 in geologic time, J. Geophys. Res., 110, C09S05, doi: 10.1029/2004JC002625.
Broecker, W. S., and, T. Takahashi, (1977), Neutralization of fossil fuel CO2 by marine calcium carbonate, in The Fate of Fossil Fuel CO 2 in the Oceans, edited by, N. R. Andersen, and, A. Malahoff, pp. 213-241, Plenum Press, New York.
Caldeira, K., and, G. H. Rau, (2000), Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications, Geophys. Res. Lett., 27, 225-228.
Cripps, G., S. Widdicombe, J. I. Spicer, and, H. S. Findlay, (2013), Biological impacts of enhanced alkalinity in Carcinus maenas, Mar. Pollut. Bull., 71, 190-198, doi: 10.1016/j.marpolbul.2013.03.015.
Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and, F. J. Millero, (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305 (5682), 362-366.
Gattuso, J. P., and, L. Hansson, (Eds.) (2011), Ocean Acidification, Oxford Univ. Press, New York.
Gattuso, J. P., M. Frankignoulle, I. Bourge, S. Romaine, and, R. W. Buddemeier, (1998), Effect of calcium carbonate saturation of seawater on coral calcification, Global Planet. Change, 18, 37-46.
Harvey, L. D. D., (2008), Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions, J. Geophys. Res., 13, C04028, doi: 10.1029/2007JC004373.
Ilyina, T., and, R. E. Zeebe, (2012), Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification, Geophys. Res. Lett., 39, L06606, doi: 10.1029/2012GL051272.
Ilyina, T., R. E. Zeebe, E. Maier-Reimer, and, C. Heinze, (2009), Early detection of ocean acidification effects on marine calcification, Global Biogeochem. Cycles, 23, GB1008, doi: 10.1029/2008GB003278.
Intergovernmental Panel on Climate Change (IPCC) (2005), Special Report on Carbon Dioxide Capture and Storage, 442 pp., Cambridge Univ. Press, Cambridge, U. K.
IPCC (2007), Climate Change 2007: The Physical Science Basis, edited by, S. Solomon, et al., pp. 996, Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA.
Key, R. M., et al. (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi: 10.1029/2004GB002247.
Kheshgi, H. S., (1995), Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy, 20, 915-922.
Klaas, C., and, D. E. Archer, (2002), Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cycles, 16 (4,1116), doi: 10.1029/2001GB001765.
Köhler, P., J. Hartmann, and, D. A. Wolf-Gladrow, (2010), Geoengineering potential of artificially enhanced silicate weathering of olivine, Proc. Natl. Acad. Sci. U.S.A., 23, 20,228-20,233.
Kranz, S., D. Wolf-Gladrow, G. Nehrke, G. Langer, and, B. Rost, (2010), Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium, Limnol. Oceanogr., 55, 2563-2569.
Maier-Reimer, E., and, K. Hasselmann, (1987), Transport and storage of CO2 in the ocean-An inorganic ocean circulation carbon cycle model, Clim. Dyn., 2, 63-90.
Maier-Reimer, E., I. Kriest, J. Segschneider, and, P. Wetzel, (2005), The HAMburg Ocean Carbon Cycle Model HAMOCC 5.1-Technical Description Release 1.1, Berichte zur Erdsystemforschung, 14, Max Planck Institute for Meteorology, Hamburg, 1407 Germany, ISSN 1614-1199, 50 p., http://www.mpimet.mpg.de/ fileadmin/publikationen/erdsystem-14.pdf.
Millero, F. J., R. Woosley, B. Ditrolio, and, J. Waters, (2009), Effects of ocean acidification on the speciation of metals in seawater, Oceanography, 22 (4), 72-85.
Morse, J. W., and, S. He, (1993), Influences of T, S, and pCO2 on the pseudo-homogeneous precipitation of CaCO3 from seawater: Implications for whiting formation, Mar. Chem., 41, 291-297.
Munhoven, G., (2002), Glacial-interglacial changes of continental weathering: Estimates of the related CO2 and HCO3-Flux variations and their uncertainties, Global Planet. Change, 33 (1-2), 155-176.
Niemeier, U., H. Schmidt, and, C. Timmreck, (2010), The dependency of geoengineered sulfate aerosol on the emission strategy, Atmos. Sci. Lett., 12, 189-194, doi: 10.1002/asl.304.
Nikulshina, V., D. Hirscha, M. Mazzottia, and, A. Steinfeld, (2006), CO2 capture from air and co-production of H2 via the Ca(OH)2-CaCO3 cycle using concentrated solar power-Thermodynamic analysis, Energy, 31, 1379-1389.
Rau, G. H., (2011), CO2 mitigation via capture and chemical conversion in seawater, Environ. Sci. Technol., 45, 1088-1092.
Rau, G. H., and, K. Caldeira, (1999), Enhanced carbonate dissolution: A means of sequestering waste CO2 as ocean bicarbonate, Energ. Convers. Manag., 40, 1803-1813.
Ridgwell, A., and, J. C. Hargreaves, (2007), Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model, Global Biogeochem. Cycles, 21, GB2008, doi: 10.1029/2006GB002764.
Ridgwell, A., T. J. Rodengen, and, K. Kohfeld, (2011), Geographical variations in the effectiveness and side effects of deep ocean carbon sequestration, Geophys. Res. Lett., 38, L17610, doi: 10.1029/2011GL048423.
Royal Society (2009), Geoengineering the Climate: Science, Governance and Uncertainty, edited by, J. Shepherd, et al., 82 pp., London.
Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO 2, Science, 305, 367-371.
Schuiling, R. D., and, P. Krijgsman, (2006), Enhanced weathering: An effective and cheap tool to sequester CO2, Clim. Change, 74, 349-354.
Six, K. D., and, E. Maier-Reimer, (1996), Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model, Global Biogeochem. Cycles, 10, 559-583.
The United States Geological Survey (2011), 2010 Minerals Yearbook, Metals and Minerals: Lime, vol. I, 43 pp., U.S. Department of the Interior, U.S. Geological Survey, Reston, Va., http://minerals.usgs.gov/minerals/pubs/ commodity/lime/myb1-2010-lime.pdf.
Wolf-Gladrow, D. A., R. E. Zeebe, C. Klaas, A. Körtzinger, and, A. G. Dickson, (2007), Total alkalinity: The explicit conservative expression and its application to biogeochemical processes, Mar. Chem., 106, 287-300.
Zeebe, R. E., and, D. A. Wolf-Gladrow, (2001), CO2 in Seawater: Equilibrium, Kinetics, Isotopes, 346 pp., Elsevier, Amsterdam.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.