Monbaliu, Jean-Christophe ; Université Catholique de Louvain – UCL > Institute of Condensed Matter and Nanosciences > Molecules, Solids and Reactivity (MOST)
Robiette, Raphaël; Université Catholique de Louvain – UCL > Institute of Condensed Matter and Nanosciences > Molecules, Solids and Reactivity (MOST)
Peeters, Daniel; Université Catholique de Louvain – UCL > Institute of Condensed Matter and Nanosciences > Molecules, Solids and Reactivity (MOST)
Marchand-Brynaert, Jacqueline; Université Catholique de Louvain – UCL > Institute of Condensed Matter and Nanosciences > Molecules, Solids and Reactivity (MOST)
Language :
English
Title :
(R)-4-phenyloxazolidin-2-thione: an efficient chiral auxiliary for [4+2] cycloaddition of 1-aminodienes and activated phosphonodienophiles
Perreux L., and Loupy A. Tetrahedron 57 (2001) 9199-9223
Jenner G. Tetrahedron 58 (2002) 5185-5202
Monbaliu J.-C., and Marchand-Brynaert J. Tetrahedron Lett. 49 (2008) 1839-1842
Monbaliu J.-C., Tinant B., and Marchand-Brynaert J. J. Mol. Struct. 879 (2008) 113-118
Robiette R., Defacqz N., Peeters D., and Marchand-Brynaert J. Curr. Org. Synth. 2 (2005) 453
Tinant B., Defacqz N., Robiette R., Touillaux R., and Marchand-Brynaert J. Phosphorus, Sulfur, Silicon 179 (2004) 389
Robiette R., Cheboub-Benchaba K., Peeters D., and Marchand-Brynaert J. J. Org. Chem. 68 (2003) 9809 and references cited therein
For references on other chiral aminodienes, see:. Kozmin S., and Rawal V.H. J. Am. Chem. Soc. 119 (1997) 7165-7166
Kozmin S., and Rawal V.H. J. Am. Chem. Soc. 121 (1999) 9562-9573
Janey J., Iwama T., Kozmin S., and Rawal V.H. J. Org. Chem. 65 (2000) 9059-9068
Murphy J.P., Nieuwenhuyzen M., Reynolds K., Sarma P.K.S., and Stevenson P.J. Tetrahedron Lett. 36 (1995) 9533-9536
McAlonan H., Murphy M., Nieuwenhuyzen J.P., Reynolds K., Sarma P.K.S., Stevenson P.J., and Thompson N. J. Chem. Soc., Perkin Trans. 1 1 (2002) 69-79
Huebner S., Jiao H., Michalik D., Neumann H., Klaus S., Struebing D., Spannenberg A., and Beller M. Chem. Asian J. 2 (2007) 720-733
Kukhar V., and Hudson H. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity (2000), John Wiley & Sons, Ltd
Collinsová M., and Jirácek J. Curr. Med. Chem. 7 (2000) 629
Kafarski P., and Lejcak B. Curr. Med. Chem. 1 (2001) 301
Mandal T., Samanta S., and Zhao C.-G. Org. Lett. 9 (2007) 943
Romanenko V.D., and Kukhar V.P. Chem. Rev. 106 (2006) 3868-3935
Kobayashi S., Kiyohara H., Nakamura Y., and Matsubara R. J. Am. Chem. Soc. 126 (2004) 6558
Palacios F., Alonso C., and de los Santos J.M. Chem. Rev. 105 (2005) 899
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham; M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A., Gas Phase Calculations were Done Using the gaussian Suite of Programs, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
For solution phase calculations (THF), given energies are obtained after corresponding fully analytical single point calculations (B3LYP/6-31G**) using the fine DFT grid and the polarizable continuum-Poisson method as incorporated in Jaguar program, version 6.5, Schrödinger, LLC, New York, NY, 2005.
Unconstrained optimizations were performed at the modified B3LYP/6-31G level (with supplementary d orbitals for sulfur atoms). SP energies were calculated at the B3LYP/6-31G** level.
The approach of the dienophile from the β-face of the diene was found to be disfavoured by about 5 kcal mol-1 (B3LYP/6-31G).
Due to the intrinsic geometrical features of the oxazolidin-2-one, oxazolidin-2-thione and thiazolidin-2-thione, we have observed an increased X···H-C(2) distance for compounds 2a-c (2.28-2.61 Å).
Δ Erota was found constant as a consequence of the conformational adaptability of the nitrogen atom.
Dienophile 3a was commercially available. Dienophiles 3b-e were synthesized from the described protocol in the literature. McClure C., and Hansen K. Tetrahedron Lett. 37 (1996) 2149-2152
Afarinkia K., Evans M., Graham J., and Jimenez-Bueno G. Tetrahedron Lett. 39 (1998) 433-434
Nickson T. J. Org. Chem. 53 (1988) 3870-3872
A solution of (R)-3-(3′-oxobut-1′-enyl)-4-phenyloxazolidin-2-thione 4 (2.54 mmol, 0.63 g), TBDMSCl (3.2 mmol, 0.48 g) and triethylamine (3.2 mmol, 0.44 cm3) in anhydrous MeCN (5 mL) was treated dropwise with an anhydrous solution of NaI (3.2 mmol, 0.48 g) in MeCN (2 mL) at room temperature over 10 min. After 15 h, the solution was concentrated under reduced pressure. The oily residue is diluted in petroleum ether (5 cm3) and filtrated over a slight celite pad. Petroleum ether was removed under reduced pressure (temperature bath less 30 °C) to give pure 2d as a yellow oil (0.91 g, >99%); 1H NMR (500 MHz, CDCl3) δ: 7.67 (d, J1,2 = 14.4 Hz, C(1)-H, 1H), 7.2-7.38 (m, 5H), 5.31 (d, J2,1 = 14.4 Hz, C(2)-H, 1H), 5.21 (dd, J4′,5a′ = 9.0 Hz and J4′,5b′ = 4.4 Hz, C(4′)-H, 1H), 4.86 (t, J5a′,5b′ = 9.0 Hz, C(5′)-Ha, 1H), 4.36 (dd, J5b′,5a′ = 9.0 Hz, C(5′)-Hb 1H), 4.18 (s, C(4a)-H, 1H), 4.04 (s, C(4b)-H, 1H), 0.98 (s, 9H), 0.16 (s, 3H), 0.15 (s, 3H); 13C NMR (125 MHz, CDCl3) δ: 186.18 (s, C{double bond, long}S), 153.20 (s, C(3)), 137.23 (s, Cq φ), 129.46 (2 s, φ), 129.01 (s, φ), 126.01 (s, C(1)), 125.62 (s, φ), 114.29 (s, C(4)), 95.10 (s, C(2)), 74.81 (s, C(5′)), 62.04 (s, C(4′)), 25.70 (s, t-Bu), 18.06 (s, Cq t-Bu), -4.73 (s, Me), -4.87 (s, Me); IR (NaCl, ν, cm-1): 2955, 1689, 1957, 1472, 1377, 1259, 1175; ESI MS m/z for C19H27NO2SSi [M+H+]: 362.25 (18), 746.16 (100).
For a detailed structural analysis (by NMR and X-ray diffraction) of cycloadducts 5a-d, see Refs. 8b and 8d.
Loupy A., Maurel F., and Sabatie-Gogova A. Tetrahedron 60 (2004) 1683-1691
Diaz-Ortiz A., Carrillo J., Cossio F., Gomez-Escalonilla M., de la Hoz A., Moreno A., and Prieto P. Tetrahedron 56 (2000) 1569-1577
Langa F., de la Cruz P., de la Hoz A., Espildora E., Cossio F., and Lecea B. J. Org. Chem. 65 (2000) 2499-2507
We have shown in a previous paper (see Monbaliu, J.-C.; Tinant, B.; Marchand-Brynaert, J. Heterocycles 2008, 75, 2459-2475) that oxazolidin-2-thione could be (quantitatively) transformed into their oxazolidin-2-one analogues for which several deprotection methods (to lead to corresponding primary amine) have been reported. See:. Turconi J., Lebeau L., Paris J.-M., and Mioskowski C. Tetrahedron 62 (2006) 8109-8114
Fisher J., Duningan J., Hatfield L., Hoying R., Ray J., and Thomas K. Tetrahedron Lett. 34 (1993) 4755-4758
Katz S., and Bergmeier S. Tetrahedron Lett. 43 (2002) 557-559