[en] The heat-labile alpha-amylase from an antarctic bacterium is the largest known protein that unfolds reversibly according to a two-state transition as shown by differential scanning calorimetry. Mutants of this enzyme were produced, carrying additional weak interactions found in thermostable alpha-amylases. It is shown that single amino acid side chain substitutions can significantly modify the melting point T(m), the calorimetric enthalpy Delta H(cal), the cooperativity and reversibility of unfolding, the thermal inactivation rate constant, and the kinetic parameters k(cat) and K(m). The correlation between thermal inactivation and unfolding reversibility displayed by the mutants also shows that stabilizing interactions increase the frequency of side reactions during refolding, leading to intramolecular mismatches or aggregations typical of large proteins. Although all mutations were located far from the active site, their overall trend is to decrease both k(cat) and K(m) by rigidifying the molecule and to protect mutants against thermal inactivation. The effects of these mutations indicate that the cold-adapted alpha-amylase has lost a large number of weak interactions during evolution to reach the required conformational plasticity for catalysis at low temperatures, thereby producing an enzyme close to the lowest stability allowing maintenance of the native conformation.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Feller, G., d'Amico, D., and Gerday, C. (1999) Biochemistry 38, 4613-4619
Feller, G., Payan, F., Theys, F., Qian, M., Haser, R., and Gerday, C. (1994) Eur. J. Biochem. 222, 441-447
Aghajari, N., Feller, G., Gerday, C., and Haser, R. (1998) Structure 6, 1503-1516
Aghajari, N., Feller, G., Gerday, C., and Haser, R. (1998) Protein Sci. 7, 564-572
Rumbley, J., Hoang, L., Mayne, L., and Englander, S. W. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 105-112
Privalov, P. L. (1990) Crit. Rev. Biochem. Mol. Biol. 25, 281-305
Makhatadze, G. I., and Privalov, P. L. (1995) Adv. Protein. Chem. 47, 307-425
Feller, G., le Bussy, O., Houssier, C., and Gerday, C. (1996) J. Biol. Chem. 271, 23836-23841
Feller, G., le Bussy, O., and Gerday, C. (1998) Appl. Environ. Microbiol. 64, 1163-1165
Matouschek, A., Matthews, J. M., Johnson, C. M., and Fersht, A. R. (1994) Protein Eng. 7, 1089-1095
Lonhienne, T., Baise, E., Feller, G., Bouriotis, V., and Gerday, C. (2001) Biochim. Biophys. Acta 1545, 349-356
D'Amico, S., Gerday, C., and Feller, G. (2000) Gene (Amst.) 253, 95-105
Lumry, R., and Eyring, H. (1954) J. Phys. Chem. 58, 110-120
Privalov, P. (1992) in Protein Folding (Creighton, T., ed) pp. 83-126, W. H. Freeman and Company, New York
Burley, S. K., and Petsko, G. A. (1988) Adv. Protein. Chem. 39, 125-189
Anderson, D. E., Becktel, W. J., and Dahlquist, F. W. (1990) Biochemistry 29, 2403-2408
Jaenicke, R. (1999) Prog. Biophys. Mol. Biol. 71, 155-241
Privalov, P. L. (1979) Adv. Protein. Chem. 33, 167-241
Strop, P., and Mayo, S. L. (2000) Biochemistry 39, 1251-1255
Cambillau, C., and Claverie, J. M. (2000) J. Biol. Chem. 275, 32383-32386
Pappenberger, G., Schurig, H., and Jaenicke, R. (1997) J. Mol. Biol. 274, 676-683
Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S., Stillman, T. J., Britton, K. L., Rice, D. W., Klump, H. H., and Robb, F. T. (1998) Proc. Natl. Acad Sci. U. S. A. 95, 12300-12305
Matthews, B. W. (1993) Annu. Rev. Biochem. 62, 139-160
Qian, M., Haser, R., Buisson, G., Duee, E., and Payan, F. (1994) Biochemistry 33, 6284-6294
Holland, L. Z., McFall-Ngai, M., and Somero, G. N. (1997) Biochemistry 36, 3207-3215
Fields, P. A., and Somero, G. N. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 11476-11481
Petrounia, I. P., and Arnold, F. H. (2000) Curr. Opin. Biotechnol. 11, 325-330
Cherry, J. R., Lamsa, M. H., Schneider, P., Vind, J., Svendsen, A., Jones, A., and Pedersen, A. H. (1999) Nat. Biotechnol. 17, 379-384
Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. H. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12809-12813
Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., and Arnold, F. H. (2000) J. Mol. Biol. 297, 1015-1026
Lebbink, J. H., Kaper, T., Bron, P., van der Oost, J., and de Vos, W. M. (2000) Biochemistry 39, 3656-3665
Merz, A., Yee, M. C., Szadkowski, H., Pappenberger, G., Crameri, A., Stemmer, W. P., Yanofsky, C., and Kirschner, K. (2000) Biochemistry 39, 880-889
Wintrode, P. L., Miyazaki, K., and Arnold, F. H. (2000) J. Biol. Chem. 275, 31635-31640
Roovers, M., Sanchez, R., Legrain, C., and Glansdorff, N. (2001) J. Bacteriol. 183, 1101-1105
Ma, B., Kumar, S., Tsai, C. J., and Nussinov, R. (1999) Protein Eng. 12, 713-720
Varley, P. G., and Pain, R. H. (1991) J. Mol. Biol. 220, 531-538
Zavodszky, P., Kardos, J., Svingor, A., and Petsko, G. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7406-7411
Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P. (1999) Nature 399, 496-499
Somero, G. N. (1995) Annu. Rev. Physiol. 57, 43-68
Jaenicke, R., and Bohm, G. (1998) Curr. Opin. Struct. Biol. 8, 738-748
Fukada, H., Takahashi, K., and Sturtevant, J. M. (1987) Biochemistry 26, 4063-4068
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.