[en] This study presents a Bayesian approach for the parameters’ identification of the STICS crop model based on the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm. The posterior distributions of nine specific crop parameters of the STICS model were sampled with the aim to improve the growth simulations of a winter wheat (Triticum aestivum L.) culture. The results obtained with the DREAM algorithm were initially compared to those obtained with a Nelder-Mead Simplex algorithm embedded within the OptimiSTICS package. Then, three types of likelihood functions implemented within the DREAM algorithm were compared, namely the standard least square, the weighted least square, and a transformed likelihood function that makes explicit use of the coefficient of variation (CV). The results showed that the proposed CV likelihood function allowed taking into account both noise on measurements and heteroscedasticity which are regularly encountered in crop modelling
Disciplines :
Computer science Agriculture & agronomy
Author, co-author :
Dumont, Benjamin ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Leemans, Vincent ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Mansouri, Majdi ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Bodson, Bernard ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Destain, Jean-Pierre ; Université de Liège - ULiège > Sciences agronomiques > Phytotechnie des régions tempérées
Destain, Marie-France ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Language :
English
Title :
Parameter identification of the STICS crop model, using an accelerated formal MCMC approach
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Basso B., Ritchie J.T. Impact of animal manure, compost and inorganic fertilizer on nitrate leaching and yield in a six-year maize alfalfa rotation. Agric. Ecosys. Environ. 2005, 108:329-341.
Basso B., Cammarano D., Troccoli A., Chen D., Ritchie J.T. Long-term wheat response to nitrogen in a rainfed Mediterranean environment: field data and simulation analysis. Eur. J. Agronomy 2010, 33:132-138.
Beaudoin N., Launay M., Sauboua E., Ponsardin G., Mary B. Evaluation of the soil crop model STICS over 8 years against the 'on farm' database of Bruyères catchment. Eur. J. Agron. 2008, 29:46-57.
Bechini L., Bocchi S., Maggiore T., Confalonieri R. Parameterization of a crop growth and development simulation model at sub model component level. An example for winter wheat (Triticum aestivum L.). Environ. Model. Softw. 2006, 21:1042-1054.
Beven K. Changing ideas in hydrology. The case of physically based models. J.Hydrol. 1989, 105:157-172.
Beven K. Comment on ''Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?'' by Vrugt JA, ter Braak CJF, Gupta HV, Robinson BA (2008). Stoch. Environ. Res. Risk Assess. 2008, 354(1).
Beven K., Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 1992, 6:279-298.
Beven K., Smith P., Freer J. So just why would a modeller choose to be incoherent?. J.Hydrol. 2008, 354:15-32.
Box G., Cox D. An analysis of transformations. J.R. Stat. Soc. Ser. B 1964, 26(2):211-252.
Box G., Tiao G. Bayesian Inference in Statistical Analysis 1973, Addison-Wesley, Reading, PA.
Brisson N., Mary B., Ripoche D., Jeuffroy M.-H., Ruget F., Nicoullaud B., Gate P., Devienne-Barret F., Antonioletti R., Durr C., Richard G., Beaudoin N., Recous S., Tayot X., Plenet D., Cellier P., Machet J.-M. STICS: a generic model for the simulation of crops and their water and nitrogen balances. Theory and parameterization applied to wheat and corn. Agronomy 1998, 18:311-346.
Brisson N., Ruget F., Gate P., Lorgeau J., Nicoulaud B., Tayo X., Plenet D., Jeuffroy M.H., Bouthier A., Ripoche D., Mary B., Justes E. STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomy 2002, 22:69-82.
Brisson N., Gara C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussière F., Cabidoche Y.M., Cellier P., Debaeke P., Gaudillère J.P., Hénault C., Maraux F., Seguin B., Sinoquet H. An overview of the crop model STICS. Eur. J. Agron. 2003, 18:309-332.
Brisson N., Launay M., Mary B., Beaudoin N. Conceptual basis, formalisations and parameterization of the STICS crop model. Ed. Quae Collect. Update Sci. Technol. 2009, 297.
Brooks S.P. Markov chain Monte Carlo and its application. Stat. J. R. Statist. Soc. Ser. D 1998, 47(1):69-100.
Campolongo F., Cariboni J., Saltelli A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 2007, 22:1509-1518.
Confalonieri R., Bechini L. Apreliminary evaluation of the simulation model CropSyst for alfalfa. Eur. J. Agron. 2004, 21:223-237.
Dietzel A., Reichert P. Calibration of computationally demanding and structurally uncertain models with an application to a lake water quality model. Environ. Model. Softw. 2012, 38(0):129-146.
Flenet F., Villon P., Ruget F. Methodology of adaptation of the STICS model to a new crop: spring linseed (Linum usitatissimum, L. Agronomy 2004, 24:367-381.
Gelman A., Carlin J.B., Stren H.S., Rubin D.B. Bayesian Data Analysis 1997, 526. Chapman and Hall, London.
Gilks W.R., Richardson S., Spiegehalter D.J. Introducing Markov chain Monte Carlo. Markov Chain Monte Carlo in Practice 1996, 1-19. Chapman & Hall, London.
Guillaume S., Bergez J.E., Wallach D., Justes E. Methodological comparison of calibration procedures for durum wheat parameters in the STICS model. Eur. J. Agron. 2011, 35:115-126.
Hansen S., Jensen H., Nielsen N., Swenden H. DAISY - Soil Plant Atmosphere System Model S NP0 Research, in the NAEP Report 1990, The Royal Veterinary and Agricultural University, Nr A10.
Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57:97-109.
Jansen M., Hagenaars T. Calibration in a Bayesian modelling framework. Bayesian Statistics and Quality Modelling in the Agro-food Production Chain 2004, Kluwer Academic, Dordrecht. M.A.J.S. van Boekel, A. Stein, A.H.C. van Bruggen (Eds.).
Jeremiah E., Sisson S.A., Sharma A., Marshall L. Efficient hydrological model parameter optimization with sequential Monte Carlo sampling. Environ. Model. Softw. 2012, 38(0):283-295.
Joseph J.F., Guillaume J.H.A. Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environ. Model. Softw. 2013, 46(0):292-298.
Laloy E., Fasbender D., Bielders C.L. Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach. J.Hydrol. 2010, 380:82-93.
Laloy E., Vrugt J.A. High-dimensional posterior exploration of hydrologic models using multiple-try DREAM_(ZS) and high-performance computing. Water Resour. Res. 2012, 48:W01526. 10.1029/2011WR010608.
Lamboni M., Makowski D., Lehuger S., Gabrielle B., Monod H. Multivariate global sensitivity analysis for dynamic crop models. Field Crop Res. 2009, 113:312-320.
Launay M., Flenet F., Ruget F., Garcia de Cortazar Atauri I. Généricité et méthodologie d'adaptation de STICS à de nouvelles cultures. Séminaire STICS. Carry-le-Rouet 2005, 55-57.
Loague K., Green R.E. Statistical and graphical method for evaluating solute transport models: overview and application. J.Contam. Hydrol. 1991, 7:51-73.
Makowski D., Wallach D., Tremblay M. Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomy 2002, 22:191-203.
Makowski D., Naud C., Jeuffroy M.H., Barbottin A., Monod H. Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliab. Eng. Sys. Saf. 2006, 91(10):1142-1147.
Mansouri M., Dumont B., Destain M.-F. Modeling and prediction of nonlinear environmental system using Bayesian methods. Comput. Electron. Agric. 2013, 92(0):16-31.
Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., Teller E. Equation of state calculations by fast computing machines. J.Chem. Phys. 1953, 21:1087-1092.
Minunno F., van Oijen M., Cameron D.R., Cerasoli S., Pereira J.S., Tomé M. Using a Bayesian framework and global sensitivity analysis to identify strengths and weaknesses of two process-based models differing in representation of autotrophic respiration. Environ. Model. Softw. 2013, 42(0):99-115.
Monod H., Naud C., Makowski D. Uncertainty and sensitivity analysis for crop models. Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications 2006, 55-100. Elsevier, (Chapter 4). D. Wallach, D. Makowski, J.W. Jones (Eds.).
Monteith J. The quest for balance in crop modeling. Agron. J. 1996, 88:695-697.
Palosuo T., Kersebaum K.C., Angulo C., Hlavinka P., Moriondo M., Olesen J.E., Patil R.H., Ruget F., Rumbaur C., Takáč J., Trnka M., Bindi M., Çaldaǧ B., Ewert F., Ferrise R., Mirschel W., Şaylan L., Šiška B., Rötter R. Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur. J. Agron. 2011, 35(3):103-114.
Preece D. R.A. Fisher and experimental design: a review. Biometrics 1990, 46(4):925-935.
Rasmussen R., Hamilton G. An approximate Bayesian computation approach for estimating parameters of complex environmental processes in a cellular automata. Environ. Model. Softw. 2012, 29(1):1-10.
Ritchie J.T., Otter S. Description and performance of CERES-Wheat, a user-oriented wheat yield model. USDA-ARS-SR Grassl. Soil Water Res. Lab. Temple RX 1984, 159-175.
Ruget F., Brisson N., Delécolle R., Faivre R. Sensitivity analysis of a crop simulation (STICS) in order to determine accuracy needed for parameters. Agronomy 2002, 22:133-158.
Schoups G., Vrugt J. Aformal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors. Water Resour. Res. 2010, 46:W10531. 10.1029/2009WR008933.
Singh A., Tripathy R., Chopra U. Evaluation of CERES-wheat and CropSyst models for water-nitrogen interactions in wheat crop. Agric. Water Manag. 2008, 95:776-786.
Ter Braak C. AMarkov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 2006, 16:239-249.
Tremblay M., Wallach D. Comparison of parameter estimation methods for crop models. Agronomy 2004, 24:351-365.
Van Diepen C., Wolf J., Van Keulen H., Rappoldt C. WOFOST: a simulation model of crop production. Soil Use Manag. 1989, 5:16-24.
Varella H. Inversion d'un modèle de culture pour estimer spatialement les propriétés des sols et améliorer la prédiction de variables agro-environnementales 2011, (PhD thesis), Univ of Avignon, 207 pp.
Varella H., Guérif M., Buis S. Global sensitivity analysis measures the quality of parameter estimation: the case of soil parameters and a crop model. Environ. Model. Softw. 2010, 25:310-319.
Varella H., Guérif M., Buis S., Beaudoin N. Soil properties estimation by inversion of a crop model and observations on crops improves the prediction of agro-environmental variables. Eur. J. Agron. 2010, 33(2):139-147.
Vrugt J., Gupta V., Bouten W., Sorooshian S. Ashuffled complex evolution metropolis algorithm for optimisation and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 2003, 39(8):1201.
Vrugt J.A., Gupta H.V., Nualláin B., Bouten W. Real-time data assimilation for operational ensemble streamflow forecasting. J.Hydrom. 2006, 7(3):548-565.
Vrugt J., ter Braak C., Clark M., Hyman J., Robinson B. Treatment of input uncertainty in hydrologic modeling using adaptive Markov Chain Monte Carlo sampling. Water Resour. Res. 2008, 44.
Vrugt J., ter Braak C., Gupta H., Robinson B. Response to comment by Keith Beven on 'Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?'. Stoch. Environ. Res. Risk Assess. 2008, 23:7.
Vrugt J., ter Braak C., Diks C., Robinson B., Hyman J., Higdon D. Accelerating Markov chain Monte Carlo simulation by self adaptive differential evolution with randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10:271-288.
Vrugt J., ter Braak C., Gupta H., Robinson B. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling. Stoch. Environ. Res. Risk Assess. 2009, 23:7.
Wallach D., Goffinet B., Bergez J.-E., Debaeke P., Leenhardt D., Aubertot J.-N. Parameter estimation for crop models: a new approach and application to a corn model. Agron. J. 2001, 93(4):757-766.
Wallach D., Buis S., Lechapentier P., Bourges J., Clastre P., Launay M., Bergez J.E., Gueriff M., Soudais J., Justes E. Apackage of parameter estimation methods and implementation for the STICS crop-soil model. Environ. Model. Softw. 2011, 26:386-394.
Wallach D., Makowski D., Jones J. Working with dynamic crop models. Evaluation, analysis, parameterization and applications 2006, Elsevier, Amsterdam. D. Wallach, D. Makowski, J. Jones (Eds.).
Wallach D., Van Evert F., Adam M. Parameter estimation software for crop models. Proceedings of the AgSAP Conference 2009 2009, 342-343. Egmond aan Zee, The Netherlands.
Williams J.R., Jones C.A., Kiniry J.R., Spanel D.A. The EPIC crop growth model. Trans. ASAE 1989, 32:497-511.
Wösten J.H.M., Lilly A., Nemes A., Le Bas C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90:169-185.
Wu Y., Liu S. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example. Environ. Model. Softw. 2012, 31(0):99-109.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.