Abstract :
[en] Wastewater sludge is dried in a convective dryer using air temperatures varying from 80°C to 200°C, velocities changing from 1 m · s−1 to 2 m · s−1, and humidities ranging from . The convective dryer is equipped with a camera and an infrared pyrometer to follow respectively the external surface and the temperature of the product. The experimental results show that drying kinetic can be divided into three phases: two short first phases, called adaptation and constant drying phases, and a long third phase, called falling drying rate phase. As the moisture content decreases, the camera confirms simultaneous shrinkage effect with the volume reduction of the product of about 30–45% of the initial volume. Moreover, an increase of the product temperature towards air temperature was measured with the infrared pyrometer. In a second step of this study, the experimental results are modeled and simulated using heat and mass balances applied to the product and the heated air. The drying curve is rightly expressed with fourth-degree polynomial model with a correlation coefficient that approximates the unity and with low calculated errors. An outstanding determination of the heat transfer coefficient has permitted calculating the product temperature with good agreement with experimental results. The heat transfer coefficient expressed by means of Nusselt number is presented as a function of Reynolds and Prandlt numbers, changeable with air and product characteristics taking into account shrinkage effect. Moreover, as the applied air temperatures are sufficiently high, transfer by radiation is not neglected and is introduced in the mathematical model.
Scopus citations®
without self-citations
37