Article (Scientific journals)
Quadratization of symmetric pseudo-Boolean functions
Anthony, Martin; Boros, Endre; Crama, Yves et al.
2016In Discrete Applied Mathematics, 203, p. 1-12
Peer Reviewed verified by ORBi
 

Files


Full Text
quadofsymmetric_WPULg_revised.pdf
Author preprint (151.5 kB)
Revised version July 2015
Download
Full Text Parts
quadofsymmetric.pdf
Author preprint (305.67 kB)
Version 1, December 2013
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
pseudo-Boolean function; quadratic optimization; symmetric function; nonlinear integer programming
Abstract :
[en] A pseudo-Boolean function is a real-valued function $f(x)=f(x_1,x_2,\ldots,x_n)$ of $n$ binary variables; that is, a mapping from $\{0,1\}^n$ to ${\bbr}$. For a pseudo-Boolean function $f(x)$ on $\{0,1\}^n$, we say that $g(x,y)$ is a quadratization of $f$ if $g(x,y)$ is a Quadratic polynomial depending on $x$ and on $m$ auxiliary binary variables $y_1,y_2,\ldots,y_m$ such that $f(x)= \min \{ g(x,y) : y \in \{0,1\}^m \} $ for all $x \in \{0,1\}^n$. By means of quadratizations, minimization of $f$ is reduced to minimization (over its extended set of variables) of the quadratic function $g(x,y)$. This is of some practical interest because minimization of quadratic functions has been thoroughly studied for the last few decades, and much progress has been made in solving such problems exactly or heuristically. A related paper initiated a systematic study of the minimum number of auxiliary $y$-variables required in a quadratization of an arbitrary function $f$ (a natural question, since the complexity of minimizing the quadratic function $g(x,y)$ depends, among other factors, on the number of binary variables). In this paper, we determine more precisely the number of auxiliary variables required by quadratizations of \emph{symmetric} pseudo-Boolean functions $f(x)$, those functions whose value depends only on the Hamming weight of the input $x$ (the number of variables equal to 1).
Research Center/Unit :
QuantOM - HEC Management School
Disciplines :
Quantitative methods in economics & management
Mathematics
Author, co-author :
Anthony, Martin;  London School of Economics
Boros, Endre;  Rutgers University (New Jersey) - RU
Crama, Yves  ;  Université de Liège - ULiège > HEC-Ecole de gestion : UER > Recherche opérationnelle et gestion de la production
Gruber, Aritanan;  Rutgers University (New Jersey) - RU
Language :
English
Title :
Quadratization of symmetric pseudo-Boolean functions
Publication date :
2016
Journal title :
Discrete Applied Mathematics
ISSN :
0166-218X
eISSN :
1872-6771
Publisher :
Elsevier Science, Amsterdam, Netherlands
Volume :
203
Pages :
1-12
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
PAI COMEX
Funders :
BELSPO - Service Public Fédéral de Programmation Politique scientifique
Available on ORBi :
since 05 December 2013

Statistics


Number of views
148 (18 by ULiège)
Number of downloads
142 (8 by ULiège)

Scopus citations®
 
14
Scopus citations®
without self-citations
10
OpenCitations
 
10
OpenAlex citations
 
21

Bibliography


Similar publications



Contact ORBi