[en] Spins transverse to the magnetization of a ferromagnet only survive over a short distance. We develop a drift-diffusion approach that captures the main features of transverse spin effects in systems with arbitrary spin textures (e.g., vortices and domain walls) and generalizes the Valet-Fert theory. In addition to the standard characteristic lengths (mean free path for majority and minority electrons, and spin diffusion length), the theory introduces two length scales, the transverse spin coherence length l(perpendicular to) and the (Larmor) spin precession length l(L). We show how l(L) and l(perpendicular to) can be extracted from ab initio calculations or measured with giant magnetoresistance experiments. In long (adiabatic) domain walls, we provide an analytic formula that expresses the so-called "nonadiabatic" (or fieldlike) torque in terms of these length scales. However, this nonadiabatic torque is no longer a simple material parameter but depends on the actual spin texture: in thin (< 10 nm) domain walls, we observe very significant deviations from the adiabatic limit.
Disciplines :
Physics
Author, co-author :
Petitjean, Cyril ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Luc, David; CEA INAC UJF Grenoble 1, SPSMS UMR E 9001, F-38054 Grenoble, France.
Waintal, Xavier; CEA INAC UJF Grenoble 1, SPSMS UMR E 9001, F-38054 Grenoble, France.
Language :
English
Title :
Unified Drift-Diffusion Theory for Transverse Spin Currents in Spin Valves, Domain Walls, and Other Textured Magnets
Publication date :
2012
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
Amer Physical Soc, College Pk, United States - Maryland
Volume :
109
Issue :
11
Pages :
117204-5
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FP7 project STREP MACALO
Commentary :
Funding was provided by the FP7 project STREP MACALO. We thank T. Valet for very interesting discussions.
X. Waintal, E.B. Myers, P.W. Brouwer, and D.C. Ralph, Phys. Rev. B PRBMDO 0163-1829 62, 12317 (2000). 10.1103/PhysRevB.62.12317
M.D. Stiles and A. Zangwill, Phys. Rev. B PRBMDO 0163-1829 66, 014407 (2002). 10.1103/PhysRevB.66.014407
A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys. Lett. 69, 990 (2005). EULEEJ 0295-5075 10.1209/epl/i2004-10452-6
D. Claudio-Gonzalez, A. Thiaville, and J. Miltat, Phys. Rev. Lett. 108, 227208 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.227208
A. Brataas, Y. Tserkovnyak, G.E.W. Bauer, and P.J. Kelly, in Spin Current, edited by, S. Maekawa, E. Saitoh, S. Valenzuela, and, Y. Kimura, (Oxford University Press, Oxford, 2011).
G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468, 213 (2008). PRPLCM 0370-1573 10.1016/j.physrep.2008.07.003
J. Xiao, A. Zangwill, and M.D. Stiles, Phys. Rev. B PRBMDO 1098-0121 73, 054428 (2006). 10.1103/PhysRevB.73.054428
I. Garate, K. Gilmore, M.D. Stiles, and A.H. MacDonald, Phys. Rev. B PRBMDO 1098-0121 79, 104416 (2009). 10.1103/PhysRevB.79.104416
A.K. Nguyen, H.J. Skadsem, and A. Brataas, Phys. Rev. Lett. 98, 146602 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.146602
S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.127204
M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, and S.S.P. Parkin, Phys. Rev. Lett. 96, 197207 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.197207
G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H. Kim, and P. Fischer, Phys. Rev. Lett. 98, 187202 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98. 187202
S. Lepadatu, J.S. Claydon, C.J. Kinane, T.R. Charlton, S. Langridge, A. Potenza, S.S. Dhesi, P.S. Keatley, R.J. Hicken, and B.J. Hickey, Phys. Rev. B PRBMDO 1098-0121 81, 020413 (2010). 10.1103/PhysRevB.81.020413
C. Burrowes, A.P. Mihai, D. Ravelosona, J.-V. Kim, C. Chappert, L. Vila, A. Marty, Y. Samson, F. Garcia-Sanchez, and L.D. Buda-Prejbeanu, Nature Phys. 6, 17 (2009). NPAHAX 1745-2473 10.1038/nphys1436
G. Malinowski, O. Boulle, and M. Klui, J. Phys. D 44, 384005 (2011). JPAPBE 0022-3727 10.1088/0022-3727/44/38/384005
T. Valet and A. Fert, Phys. Rev. B PRBMDO 0163-1829 48, 7099 (1993). 10.1103/PhysRevB.48.7099
G.E.W. Bauer, Y. Tserkovnyak, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B PRBMDO 0163-1829 67, 094421 (2003). 10.1103/PhysRevB.67.094421
S. Borlenghi, V. Rychkov, C. Petitjean, and X. Waintal, Phys. Rev. B PRBMDO 1098-0121 84, 035412 (2011). 10.1103/PhysRevB.84.035412
V.S. Rychkov, S. Borlenghi, H. Jaffres, A. Fert, and X. Waintal, Phys. Rev. Lett. 103, 066602 (2009). PRLTAO 0031-9007 10.1103/PhysRevLett.103.066602
N. Strelkov, A. Vedyayev, N. Ryzhanova, D. Gusakova, L.D. Buda-Prejbeanu, M. Chshiev, S. Amara, N. de Mestier, C. Baraduc, and B. Dieny, Phys. Rev. B PRBMDO 1098-0121 84, 024416 (2011). 10.1103/PhysRevB.84.024416
S. Zhang, P.M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002). PRLTAO 0031-9007 10.1103/PhysRevLett.88.236601
A. Brataas, G.E. Bauer, and P.J. Kelly, Phys. Rep. 427, 157 (2006). PRPLCM 0370-1573 10.1016/j.physrep.2006.01.001
I. Turek and K. Carva, J. Phys. Condens. Matter 19, 365203 (2007). JCOMEL 0953-8984 10.1088/0953-8984/19/36/365203
K. Carva and I. Turek, Phys. Rev. B PRBMDO 1098-0121 76, 104409 (2007). 10.1103/PhysRevB.76.104409
W. Chen, G. de Loubens, J.-M.L. Beaujour, J.Z. Sun, and A.D. Kent, Appl. Phys. Lett. 95, 172513 (2009). APPLAB 0003-6951 10.1063/1.3254242
X. Waintal and M. Viret, Europhys. Lett. 65, 427 (2004). EULEEJ 0295-5075 10.1209/epl/i2003-10089-y
L. Berger, Phys. Rev. B PRBMDO 0163-1829 54, 9353 (1996). 10.1103/PhysRevB.54.9353