Article (Scientific journals)
Semiclassical Gaps in the Density of States of Chaotic Andreev Billiards
Kuipers, Jack; Waltner, Daniel; Petitjean, Cyril et al.
2010In Physical Review Letters, 104 (2), p. 027001-4
Peer Reviewed verified by ORBi
 

Files


Full Text
Phys. Rev. Lett 2010 Kuipers.pdf
Publisher postprint (478.32 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] The connection of a superconductor to a chaotic ballistic quantum dot leads to interesting phenomena, most notably the appearance of a hard gap in its excitation spectrum. Here we treat such an Andreev billiard semiclassically where the density of states is expressed in terms of the classical trajectories of electrons (and holes) that leave and return to the superconductor. We show how classical orbit correlations lead to the formation of the hard gap, as predicted by random matrix theory in the limit of negligible Ehrenfest time tau(E), and how the influence of a finite tau(E) causes the gap to shrink. Furthermore, for intermediate tau(E) we predict a second gap below E = pi h/2 tau(E) which would presumably be the clearest signature yet of tau(E) effects.
Disciplines :
Physics
Author, co-author :
Kuipers, Jack;  Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
Waltner, Daniel;  Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
Petitjean, Cyril ;  Université de Liège - ULiège > Département de physique > Physique quantique statistique
Berkolaiko, Gregory;  Texas A&M Univ, Dept Math, College Stn, TX 77843 USA.
Richter, Klaus;  Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
Language :
English
Title :
Semiclassical Gaps in the Density of States of Chaotic Andreev Billiards
Publication date :
2010
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
Amer Physical Soc, College Pk, United States - Maryland
Volume :
104
Issue :
2
Pages :
027001-4
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
DFG - Deutsche Forschungsgemeinschaft
NSF - National Science Foundation
AvH - Alexander von Humboldt Foundation
Funding number :
DFG [GRK 638]; NSF [0604859]
Commentary :
We thank I.. Adagideli, A. Altland, Ph. Jacquod, M. Novaes, J. D. Urbina, and R. S. Whitney for valuable discussions. We acknowledge funding from the DFG under GRK 638 (D. W., K. R.), the NSF under Grant No. 0604859 (G. B.), and from the AvH Foundation (J. K., C. P.).
Available on ORBi :
since 04 December 2013

Statistics


Number of views
46 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
25
Scopus citations®
without self-citations
11
OpenCitations
 
23
OpenAlex citations
 
29

Bibliography


Similar publications



Contact ORBi