[en] We address frequency-dependent quantum transport through mesoscopic conductors in the semiclassical limit. By generalizing the trajectory-based semiclassical theory of dc quantum transport to the ac case, we derive the average screened conductance as well as ac weak-localization corrections for chaotic conductors. Thereby we confirm respective random matrix results and generalize them by accounting for Ehrenfest time effects. We consider the case of a cavity connected through many leads to a macroscopic circuit which contains ac sources. In addition to the reservoir the cavity itself is capacitively coupled to a gate. By incorporating tunnel barriers between cavity and leads we obtain results for arbitrary tunnel rates. Finally, based on our findings we investigate the effect of dephasing on the charge relaxation resistance of a mesoscopic capacitor in the linear low-frequency regime.
Disciplines :
Physics
Author, co-author :
Petitjean, Cyril ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Semiclassical approach to the ac conductance of chaotic cavities
Publication date :
2009
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
Amer Physical Soc, College Pk, United States - Maryland
Volume :
80
Issue :
11
Pages :
115310-12
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
DFG - Deutsche Forschungsgemeinschaft AvH - Alexander von Humboldt-Stiftung
Commentary :
The authors thank P. W. Brouwer, M. Buttiker, M. Gutierrez, S. Nigg, M. Polianski, and R. S. Whitney for valuable and stimulating discussions. We acknowledge funding from the DFG under GRK 638, FOR 760 and from the Alexander von Humboldt Foundation (C. P. and J. K.).
J. B. Pieper and J. C. Price, Phys. Rev. Lett. 72, 3586 (1994). 10.1103/PhysRevLett.72.3586
W. Chen, T. P. Smith, M. Büttiker, and M. Shayegan, Phys. Rev. Lett. 73, 146 (1994). 10.1103/PhysRevLett.73.146
L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev. Lett. 73, 3443 (1994). 10.1103/PhysRevLett. 73.3443
M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995). 10.1103/PhysRevLett.75.3340
S. Verghese, R. A. Wyss, T. Schapers, Q. Hu, A. Förster, and M. J. Rooks, Phys. Rev. B 52, 14834 (1995). 10.1103/PhysRevB.52.14834
R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370 (1997). 10.1103/PhysRevLett.78.3370
L. H. Reydellet, P. Roche, D. C. Glattli, B. Etienne, and Y. Jin, Phys. Rev. Lett. 90, 176803 (2003). 10.1103/PhysRevLett.90.176803
J. Gabelli, G. Fève, J. Berroir, and B. Placais, Science 313, 499 (2006). 10.1126/science.1126940 (Pubitemid 44148449)
G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D. Glattli, A. Cavanna, B. Etienne, and Y. Jin, Science 316, 1169 (2007). 10.1126/science.1141243 (Pubitemid 46877474)
K. E. Nagaev, S. Pilgram, and M. Büttiker, Phys. Rev. Lett. 92, 176804 (2004). 10.1103/PhysRevLett.92.176804
F. W. J. Hekking and J. P. Pekola, Phys. Rev. Lett. 96, 056603 (2006). 10.1103/PhysRevLett.96.056603 (Pubitemid 43270992)
J. Salo, F. W. J. Hekking, and J. P. Pekola, Phys. Rev. B 74, 125427 (2006). 10.1103/PhysRevB.74.125427 (Pubitemid 44484376)
M. L. Polianski, P. Samuelsson, and M. Büttiker, Phys. Rev. B 72, 161302 (R) (2005). 10.1103/PhysRevB.72.161302 (Pubitemid 43022066)
D. Bagrets and F. Pistolesi, Phys. Rev. B 75, 165315 (2007). 10.1103/PhysRevB.75.165315
S. E. Nigg and M. Büttiker, Phys. Rev. B 77, 085312 (2008). 10.1103/PhysRevB.77.085312
M. Moskalets, P. Samuelsson, and M. Büttiker, Phys. Rev. Lett. 100, 086601 (2008). 10.1103/PhysRevLett.100.086601
I. Safi, C. Bena, and A. Crépieux, Phys. Rev. B 78, 205422 (2008). 10.1103/PhysRevB.78.205422
H. C. Park and K.-H. Ahn, Phys. Rev. Lett. 101, 116804 (2008). 10.1103/PhysRevLett.101.116804
D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981). 10.1103/PhysRevB.23.6851
H. U. Baranger and A. D. Stone, Phys. Rev. B 40, 8169 (1989). 10.1103/PhysRevB.40.8169
K. Shepard, Phys. Rev. B 43, 11623 (1991). 10.1103/PhysRevB.43.11623
H. M. Pastawski, Phys. Rev. B 44, 6329 (1991). 10.1103/PhysRevB.44.6329
M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993). 10.1103/PhysRevLett.70.4114
M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993). 10.1088/0953-8984/5/50/017
M. G. Vavilov, J. Phys. A 38, 10587 (2005). 10.1088/0305-4470/38/49/009 (Pubitemid 41706107)
M. Polianski and P. W. Brouwer, J. Phys. A 36, 3215 (2003). 10.1088/0305-4470/36/12/321
M. Büttiker and T. Christen, in Mesoscopic Electron Transport, NATO Advanced Studies Institute, Series E: Applied Science, edited by, L. Kowenhoven, G. Schön, and, L. Sohn, (Kluwer, Dordrecht, 1997), p. 259.
The regime of larger ac-driving frequency requires other techniques, such as Floquet scattering theory which has been applied in the context of ac-driven chaotic scattering, e.g. in Ref..
R. Blümel and U. Smilansky, Phys. Rev. Lett. 60, 477 (1988). 10.1103/PhysRevLett.60.477
H. U. Baranger, R. A. Jalabert, and A. D. Stone, Phys. Rev. Lett. 70, 3876 (1993). 10.1103/PhysRevLett.70.3876
J. Verbaarschot, H. Weidenmüller, and M. Zirnbauer, Phys. Rep. 129, 367 (1985). 10.1016/0370-1573(85)90070-5
K. Frahm, EPL 30, 457 (1995). 10.1209/0295-5075/30/8/003
P. W. Brouwer and M. Büttiker, EPL 37, 441 (1997). 10.1209/epl/i1997-00169-0
I. L. Aleiner and A. I. Larkin, Phys. Rev. B 54, 14423 (1996). 10.1103/PhysRevB.54.14423
A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262 (1968)
A. I. Larkin and Yu. N. Ovchinnikov, [Sov. Phys. JETP 28, 1200 (1969)].
G. Berman and G. Zaslavsky, Physica A 91, 450 (1978). 10.1016/0378-4371(78)90190-5
M. G. Vavilov and A. I. Larkin, Phys. Rev. B 67, 115335 (2003). 10.1103/PhysRevB.67.115335
H. Schomerus and P. Jacquod, J. Phys. A 38, 10663 (2005). 10.1088/0305-4470/38/49/013 (Pubitemid 41706111)
D. Waltner and K. Richter, in Handbook of Nonlinear Dynamics in Nanosystems, edited by, G. Radons, (Wiley, New York, in press).
K. Richter and M. Sieber, Phys. Rev. Lett. 89, 206801 (2002). 10.1103/PhysRevLett.89.206801
I. Adagideli, Phys. Rev. B 68, 233308 (2003). 10.1103/PhysRevB.68.233308
S. Müller, S. Heusler, P. Braun, and F. Haake, New J. Phys. 9, 12 (2007). 10.1088/1367-2630/9/1/012 (Pubitemid 46160663)
P. Jacquod and R. S. Whitney, Phys. Rev. B 73, 195115 (2006). 10.1103/PhysRevB.73.195115
P. W. Brouwer and S. Rahav, Phys. Rev. B 74, 075322 (2006). 10.1103/PhysRevB.74.075322
P. W. Brouwer, Phys. Rev. B 76, 165313 (2007). 10.1103/PhysRevB.76.165313
R. S. Whitney, Phys. Rev. B 75, 235404 (2007). 10.1103/PhysRevB.75.235404
C. Petitjean, P. Jacquod, and R. S. Whitney, Pis'ma Zh. Eksp. Teor. Fiz. 86, 736 (2007)
C. Petitjean, P. Jacquod, and R. S. Whitney, [JETP Lett. 86, 647 (2007)]. 10.1134/S0021364007220079
R. S. Whitney, P. Jacquod, and C. Petitjean, Phys. Rev. B 77, 045315 (2008). 10.1103/PhysRevB.77.045315
J. Kuipers and M. Sieber, Phys. Rev. E 77, 046219 (2008). 10.1103/PhysRevE.77.046219 (Pubitemid 351607664)
P. W. Brouwer and A. Altland, Phys. Rev. B 78, 075304 (2008). 10.1103/PhysRevB.78.075304
M. Wilkinson, J. Phys. A 20, 2415 (1987). 10.1088/0305-4470/20/9/028
B. Mehlig and K. Richter, Phys. Rev. Lett. 80, 1936 (1998). 10.1103/PhysRevLett.80.1936
K. Richter, Semiclassical Theory of Mesoscopic Quantum Systems, Springer Tracts in Modern Physics (Springer, Berlin, 2000), Vol. 161.
V. A. Gopar, P. A. Mello, and M. Büttiker, Phys. Rev. Lett. 77, 3005 (1996). 10.1103/PhysRevLett.77.3005
Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000). 10.1016/S0370-1573(99)00123-4
A. Prêtre, H. Thomas, and M. Büttiker, Phys. Rev. B 54, 8130 (1996). 10.1103/PhysRevB.54.8130
J. Wang, Q. Zheng, and H. Guo, Phys. Rev. B 55, 9770 (1997). 10.1103/PhysRevB.55.9770
M. Büttiker, J. Low Temp. Phys. 118, 519 (2000). 10.1023/A:1004622924099
I. Aleiner, P. Brouwer, and L. Glazman, Phys. Rep. 358, 309 (2002). 10.1016/S0370-1573(01)00063-1
P. W. Brouwer, A. Lamacraft, and K. Flensberg, Phys. Rev. B 72, 075316 (2005). 10.1103/PhysRevB.72.075316
B. Wang, J. Wang, and H. Guo, Phys. Rev. Lett. 82, 398 (1999). 10.1103/PhysRevLett.82.398
W. H. Miller, Adv. Chem. Phys. 30, 77 (1975). 10.1002/9780470143827.ch3
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).
M. Sieber, J. Phys. A 32, 7679 (1999). 10.1088/0305-4470/32/44/307
Part IV "time dependence" of Ref.. In order to compare with our result, one should at first neglect the difference between τE cl and τE op, then you substitute τabs by -iω in Eqs. (52) and (53) of Ref..
D. Waltner, M. Gutiérrez, A. Goussev, and K. Richter, Phys. Rev. Lett. 101, 174101 (2008). 10.1103/PhysRevLett.101.174101
M. Gutiérrez, D. Waltner, J. Kuipers, and K. Richter, Phys. Rev. E 79, 046212 (2009). 10.1103/PhysRevE.79.046212
As previously fixed in the dc case see Refs.. Reference had incorrectly treated the classical correlation at the encounter and therefore presented a discrepancy of a factor 2 concerning the ratio τE cl / τD.
S. Oberholzer, E. V. Sukhorukov, and C. Schönenberger, Nature (London) 415, 765 (2002). 10.1038/415765a
O. Yevtushenko, G. Lütjering, D. Weiss, and K. Richter, Phys. Rev. Lett. 84, 542 (2000). 10.1103/PhysRevLett.84.542
G. Casati, G. Maspero, and D. L. Shepelyansky, Phys. Rev. E 56, R6233 (1997). 10.1103/PhysRevE.56.R6233
K. M. Frahm, Phys. Rev. E 56, R6237 (1997). 10.1103/PhysRevE.56.R6237
S. Iida, H. A. Weidenmüller, and J. A. Zuk, Ann. Phys. 200, 219 (1990). 10.1016/0003-4916(90)90275-S
M. Büttiker, J. Korean Phys. Soc. 34, 121 (1999).
M. Büttiker, Phys. Rev. B 33, 3020 (1986). 10.1103/PhysRevB.33.3020
Strictly speaking, dephasing, and voltage probe models are fully equivalent in the one channel limit only. However, they also lead to the same results in the limit of low temperature and frequency. See H. Förster, P. Samuelsson, S. Pilgram, and M. Büttiker, Phys. Rev. B 75, 035340 (2007). 10.1103/PhysRevB.75.035340
J. Kuipers, C. Petitjean, D. Waltner, and K. Richter, arXiv:0907.2660 (unpublished).
M. Henseler, T. Dittrich, and K. Richter, Phys. Rev. E 64, 046218 (2001). 10.1103/PhysRevE.64.046218