[en] We revisit the gauge-covariant canonical formalism by separating explicitly physical and gauge degrees of freedom. We show in particular that the gauge-invariant linear and angular momentum operators proposed by Chen et al. can consistently be derived from the standard procedure based on Noether’s theorem. Finally, we demonstrate that this approach is essentially equivalent to the gauge-invariant canonical formalism based on the concept of Dirac variables. Because of many similarities with the background field method, the formalism developed here should also be relevant to general relativity and any metric theories.
Disciplines :
Physics
Author, co-author :
Lorce, Cédric ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Physique des astroparticules
Language :
English
Title :
Gauge-covariant canonical formalism revisited with application to the proton spin decomposition
Publication date :
2013
Journal title :
Physical Review. D, Particles, Fields, Gravitation, and Cosmology
ISSN :
1550-7998
eISSN :
1550-2368
Publisher :
American Physical Society, College Park, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. A. M. Dirac, Can. J. Phys. 33, 650 (1955). CJPHAD 0008-4204 10.1139/p55-081
B. S. DeWitt, Phys. Rev. 125, 2189 (1962). PHRVAO 0031-899X 10.1103/PhysRev.125.2189
S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962). APNYA6 0003-4916 10.1016/0003-4916(62)90232-4
Y.-S. Duan and P.-M. Zhang, Mod. Phys. Lett. A 17, 2283 (2002). MPLAEQ 0217-7323 10.1142/S0217732302008940
R. O. Fulp and L. K. Norris, J. Math. Phys. (N.Y.) 24, 1871 (1983). JMAPAQ 0022-2488 10.1063/1.525910
T. Kashiwa and N. Tanimura, Fortschr. Phys. 45, 381 (1997). FPYKA6 0015-8208 10.1002/prop.2190450503
T. Kashiwa and N. Tanimura, Phys. Rev. D 56, 2281 (1997). PRVDAQ 0556-2821 10.1103/PhysRevD.56.2281
X.-S. Chen, X.-F. Lu, W.-M. Sun, F. Wang, and T. Goldman, Phys. Rev. Lett. 100, 232002 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.232002
X.-S. Chen, W.-M. Sun, F. Wang, and T. Goldman, Phys. Rev. D 83, 071901 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.071901
M. Wakamatsu, Phys. Rev. D 81, 114010 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.114010
M. Wakamatsu, Phys. Rev. D 83, 014012 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.014012
C. Lorcé, Phys. Rev. D 87, 034031 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.034031
B. S. DeWitt, Phys. Rev. 162, 1195 (1967). PHRVAO 0031-899X 10.1103/PhysRev.162.1195
B. S. DeWitt, Phys. Rev. 162, 1239 (1967). PHRVAO 0031-899X 10.1103/PhysRev.162.1239
B. S. DeWitt, in A Gauge-Invariant Effective Action,in Quantum Gravity 2, A Second Oxford Symposium, edited by, C. J. Isham, R. Penrose, and, D. W. Sciama, (Clarendon Press, Oxford, 1981), pp. 449-487;
[B. S. DeWitt California University Santa Barbara, Report No. NSF-ITP-80-031].
G. 't Hooft, in Proceedings of Acta Universitatis Wratislaviensis, Karpacz, 1975, No. 368, Vol. 1 (Publisher, Wroclaw, 1976), pp. 345-369.
M. T. Grisaru, P. van Nieuwenhuizen, and C. C. Wu, Phys. Rev. D 12, 3203 (1975). PRVDAQ 0556-2821 10.1103/PhysRevD.12.3203
D. G. Boulware, Phys. Rev. D 23, 389 (1981). PRVDAQ 0556-2821 10.1103/PhysRevD.23.389
L. F. Abbott, Nucl. Phys. B185, 189 (1981). NUPBBO 0550-3213 10.1016/0550-3213(81)90371-0
J. R. Ray, Nuovo Cimento A 56, 189 (1968). NCIAAT 0369-3546 10.1007/BF02820284
R. Jackiw, Phys. Rev. Lett. 41, 1635 (1978). PRLTAO 0031-9007 10.1103/PhysRevLett.41.1635
B. A. Levitsky and Y. A. Yappa, Teor. Mat. Fiz. 48, 227 (1981) TMFZAL 0564-6162
[B. A. Levitsky Y. A. Yappa Theor. Math. Phys. 48, 715 (1981)]. TMPHAH 0040-5779 10.1007/BF01019082
B. A. Levitsky and Y. A. Yappa, Teor. Mat. Fiz. 53, 250 (1982) TMFZAL 0564-6162
[B. A. Levitsky Y. A. Yappa Theor. Math. Phys. 53, 1107 (1982)]. TMPHAH 0040-5779 10.1007/BF01016680
S. Hamamoto, Z. Phys. C 19, 353 (1983). ZPCFD2 0170-9739 10.1007/BF01577190
G. Barnich, F. Brandt, and M. Henneaux, Phys. Lett. B 346, 81 (1995). PYLBAJ 0370-2693 10.1016/0370-2693(95)00011-9
C. L. Lewis, Am. J. Phys. 77, 839 (2009). AJPIAS 0002-9505 10.1119/1.3153503
B. S. DeWitt, Int. ser. monogr. phys. 114, 1 (2003). ISMPFK 0950-5563
T. Frankel, The Geometry of Physics: An Introduction (Cambridge University Press, Cambridge, England, 1997).
F. de Felice and C. J. S. Clarke, Relativity on Curved Manifolds (Cambridge University Press, Cambridge, England, 1990).
A. Unzicker and T. Case, arXiv:physics/0503046.
Z.-Q. Guo and I. Schmidt, Phys. Rev. D 87, 114016 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.114016
Z.-Q. Guo and I. Schmidt, Phys. Rev. D 87, 114017 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.114017
H.-M. Chan and S. T. Tsou, Phys. Rev. D 57, 2507 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.2507
H.-M. Chan and S. T. Tsou, Int. J. Mod. Phys. A 27, 1230002 (2012). IMPAEF 0217-751X 10.1142/S0217751X12300025
M. J. Baker, J. Bordes, H. M. Chan, and S. T. Tsou, Int. J. Mod. Phys. A 27, 1250087 (2012). IMPAEF 0217-751X 10.1142/S0217751X1250087X
H. A. Al-Kuwari and M. O. Taha, Am. J. Phys. 59, 363 (1991). AJPIAS 0002-9505 10.1119/1.16551
C. Lorcé, arXiv:1306.0456.
C. Lorcé, Phys. Lett. B 719, 185 (2013). PYLBAJ 0370-2693 10.1016/j.physletb.2013.01.007
Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). PHRVAO 0031-899X 10.1103/PhysRev.115.485
J. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology Vol. 32 (Cambridge University Press, Cambridge, England, 2011).
V. N. Gribov, Nucl. Phys. B139, 1 (1978). NUPBBO 0550-3213 10.1016/0550-3213(78)90175-X
A. Bassetto, I. Lazzizzera, and R. Soldati, Phys. Lett. 131B, 177 (1983). PYLBAJ 0370-2693 10.1016/0370-2693(83)91115-2
S. V. Ivanov, G. P. Korchemsky, and A. V. Radyushkin, Yad. Fiz. 44, 230 (1986) IDFZA7 0044-0027
[S. V. Ivanov G. P. Korchemsky A. V. Radyushkin Sov. J. Nucl. Phys. 44, 145 (1986)]. SJNCAS 0038-5506
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.