Article (Scientific journals)
A note on syndeticity, recognizable sets and Cobham's theorem
Rigo, Michel; Waxweiler, Laurent
2006In Bulletin of the European Association for Theoretical Computer Science, 88, p. 169-173
Peer reviewed
 

Files


Full Text
coblw.pdf
Author postprint (61.31 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Numeration system; recognizable sets of integers; Cobham's theorem
Abstract :
[en] In this note, we give an alternative proof of the following result. Let p,q>=2 be two multiplicatively independent integers. If an infinite set of integers is both p- and q-recognizable, then it is syndetic. Notice that this result is needed in the classical proof of the celebrated Cobham’s theorem. Therefore the aim of this paper is to complete [13] and [1] to obtain an accessible proof of Cobham’s theorem.
Disciplines :
Mathematics
Computer science
Author, co-author :
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Waxweiler, Laurent ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
A note on syndeticity, recognizable sets and Cobham's theorem
Publication date :
2006
Journal title :
Bulletin of the European Association for Theoretical Computer Science
ISSN :
0252-9742
Publisher :
European Association for Theoretical Computer Science (EATCS), Leiden, Netherlands
Volume :
88
Pages :
169-173
Peer reviewed :
Peer reviewed
Available on ORBi :
since 01 July 2009

Statistics


Number of views
52 (2 by ULiège)
Number of downloads
1 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi