[en] It is commonly believed that monetary gain is the cause of gambling behaviour in humans. Mesolimbic dopamine (DA), the chief neuromediator of incentive motivation, is indeed released to a larger extent in pathological gamblers (PG) than in healthy controls (HC) during gambling episodes (Joutsa et al., 2012; Linnet et al., 2011), as in other forms of compulsive and addictive behaviour. However, recent findings indicate that the interaction between DA and reward is not so straightforward (Blum et al., 2012; Linnet et al., 2012). In PG and HC, DA release seems to reflect the unpredictability of reward delivery rather than reward per se. This suggests that the motivation to gamble is strongly (though not entirely) determined by the inability to predict reward occurrence. Here we discuss several views of the role of DA in gambling, and attempt to provide an evolutionary framework to explain its role in uncertainty.
Disciplines :
Neurosciences & behavior
Author, co-author :
Anselme, Patrick ; Université de Liège - ULiège > Département de Psychologie : cognition et comportement > Neuroscience comportementale et psychopharmacologie expér.
Robinson, Mike J.F.
Language :
English
Title :
What motivates gambling behaviour? Insight into dopamine’s role
Publication date :
2013
Journal title :
Frontiers in Behavioral Neuroscience
eISSN :
1662-5153
Publisher :
Frontiers in Bioscience Publications, Tampa, United States - Florida
Special issue title :
Neuronal and Psychological Underpinings of Pathological Gambling
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adriani, W., and Laviola, G. (2006). Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters. BMC Neurosci. 7:52. doi: 10.1186/1471-2202-7-52
Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behav. Brain Res. 256C, 1-4. doi: 10.1016/j.bbr.2013.07.039
Anselme, P., Robinson, M. J. F., and Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behav. Brain Res. 238, 53-61. doi: 10.1016/j.bbr.2012.10.006
Berridge, K. C. (2007). The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl) 191, 391-431. doi: 10.1007/s00213-006-0578-x
Blum, K., Gardner, E., Oscar-Berman, M., and Gold, M. (2012). "Liking" and "wanting" linked to reward deficiency syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Curr. Pharm. Des. 18, 113. doi: 10.2174/138161212798919110
Braverman, J., and Shaffer, H. J. (2012). How do gamblers start gambling: identifying behavioural markers for high-risk internet gambling. Eur. J. Public Health 22, 273-278. doi: 10.1093/eur-pub/ckp232
Campbell-Meiklejohn, D. K., Woolrich, M. W., Passingham, R. E., and Rogers, R. D. (2008). Knowing when to stop: the brain mechanisms of chasing losses. Biol. Psychiatry 63, 293-300. doi: 10.1016/j.biopsych.2007.05.014
Chase, H. W., and Clark, L. (2010). Gambling severity predicts midbrain response to near-miss outcomes. J. Neurosci. 30, 6180-6187. doi: 10.1523/JNEUROSCI.5758-09.2010
Clark, L., Lawrence, A. J., Astley-Jones, F., and Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron 61, 481-490. doi: 10.1016/j.neuron.2008.12.031
Collins, L., Young, D. B., Davies, K., and Pearce, J. M. (1983). The influence of partial reinforcement on serial autoshaping with pigeons. Q. J. Exp. Psychol. B 35, 275-290.
Costikyan, G. (2013). Uncertainty in Games. Cambridge, MA: MIT Press.
de Lafuente, V., and Romo, R. (2011). Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proc. Natl. Acad. Sci. U.S.A. 108, 19767-19771. doi: 10.1073/pnas.1117636108
Dixon, M. J., Harrigan, K. A., Sandhu, R., Collins, K., and Fugelsang, J. A. (2010). Losses disguised as wins in modern multi-line video slot machines. Addiction 105, 1819-1824. doi: 10.1111/j.1360-0443.2010.03050.x
Dow Schüll, N. (2012). Addiction by Design: Machine Gambling in Las Vegas, 1st Edn. Princeton, NJ: Princeton University Press.
Estle, S. J., Green, L., Myerson, J., and Holt, D. D. (2006). Differential effects of amount on temporal and probability discounting of gains and losses. Mem. Cognit. 34, 914-928. doi: 10.3758/BF03193437
Fiorillo, C. D., Tobler, P. N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898-1902. doi: 10.1126/science.1077349
Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., et al. (2011). A selective role for dopamine in stimulus-reward learning. Nature 469, 53-57. doi: 10.1038/nature09588
Forkman, B. (1991). Some problems with current patch-choice theory: a study on the Mongolian gerbil. Behaviour 117, 243-254. doi: 10.1163/156853991X00553
Gipson, C. D., Alessandri, J. J. D., Miller, H. C., and Zentall, T. R. (2009). Preference for 50% reinforcement over 75% reinforcement by pigeons. Learn. Behav. 37, 289-298. doi: 10.3758/LB.37.4.289
Joutsa, J., Johansson, J., Niemelä, S., Ollikainen, A., Hirvonen, M. M., Piepponen, P., et al. (2012). Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage 60, 1992-1999. doi: 10.1016/j.neuroimage.2012.02.006
Kacelnik, A., and Bateson, M. (1996). Risky theories: the effects of variance on foraging decisions. Am. Zool. 36, 402-434.
Kassinove, J. I., and Schare, M. L. (2001). Effects of the "near miss" and the "big win" on persistence at slot machine gambling. Psychol. Addict. Behav. 15, 155-158. doi: 10.1037/0893-164X.15.2.155
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature 393, 266-268. doi: 10.1038/30498
Linnet, J. (2013). The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder. Front. Psychol. 4:709. doi: 10.3389/fpsyg.2013.00709
Linnet, J., Møller, A., Peterson, E., Gjedde, A., and Doudet, D. (2011). Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 106, 383-390. doi: 10.1111/j.1360-0443.2010.03126.x
Linnet, J., Mouridsen, K., Peterson, E., Møller, A., Doudet, D. J., and Gjedde, A. (2012). Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Res. 204, 55-60. doi: 10.1016/j.pscychresns.2012.04.012
Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A., and Møller, A. (2010). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatr. Scand. 122, 326-333. doi: 10.1111/j.1600-0447.2010.01591.x
Lomanowska, A. M., Lovic, V., Rankine, M. J., Mooney, S. J., Robinson, T. E., and Kraemer, G. W. (2011). Inadequate early social experience increases the incentive salience of reward-related cues in adulthood. Behav. Brain Res. 220, 91-99. doi: 10.1016/j.bbr.2011.01.033
Melis, M. R., and Argiolas, A. (1995). Dopamine and sexual behavior. Neurosci. Biobehav. Rev. 19, 19-38. doi: 10.1016/0149-7634(94)00020-2
Monosov, I. E., and Hikosaka, O. (2013). Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat. Neurosci. 16, 756-762. doi: 10.1038/nn.3398
Nader, K., Bechara, A., and van der Kooy, D. (1997). Neurobiological constraints on behavioral models of motivation. Annu. Rev. Psychol. 48, 85-114. doi: 10.1146/annurev.psych.48.1.85
Pattison, K. F., Laude, J. R., and Zentall, T. R. (2013). Environmental enrichment affects sub-optimal, risky, gambling-like choice by pigeons. Anim. Cogn. 16, 429-434. doi: 10.1007/s10071-012-0583-x
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., and Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher "wanting" but not "liking" for sweet rewards. J. Neurosci. 23, 9395-9402.
Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J., et al. (2007). How the brain translates money into force: a neuroimag-ing study of subliminal motivation. Science 316, 904-906. doi: 10.1126/science.1140459
Preuschoff, K., Bossaerts, P., and Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51, 381-390. doi: 10.1016/j.neuron.2006.06.024
Scherrer, J. F., Xian, H., Kapp, J. M. K., Waterman, B., Shah, K. R., Volberg, R., et al. (2007). Association between exposure to childhood and lifetime traumatic events and lifetime pathological gambling in a twin cohort. J. Nerv. Ment. Dis. 195, 72-78. doi: 10.1097/01.nmd.0000252384.20382.e9
van Holst, R. J., van den Brink, W., Veltman, D. J., and Goudriaan, A. E. (2010). Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci. Biobehav. Rev. 34, 87-107. doi: 10.1016/j.neubiorev.2009.07.007
Weatherly, J. N., Sauter, J. M., and King, B. M. (2004). The "big win" and resistance to extinction when gambling. J. Psychol. 138, 495-504. doi: 10.3200/JRLP.138.6.495-504
Zack, M., and Poulos, C. X. (2009). Parallel roles for dopamine in pathological gambling and psy-chostimulant addiction. Curr. Drug Abuse Rev. 2, 11-25. doi: 10.2174/1874473710902010011
Zald, D. H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G. S., et al. (2004). Dopamine transmission in the human stria-tum during monetary reward tasks. J. Neurosci. 24, 4105-4112. doi: 10.1523/JNEUROSCI.4643-03.2004
Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., and Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron 42, 509-517. doi: 10.1016/S0896-6273(04)00183-7
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.