[en] Psychrophiles, host of permanently cold habitats, display metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. These organisms have evolved by producing, among other peculiarities, cold-active enzymes that have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. The emerging picture suggests that these enzymes display a high catalytic efficiency at low temperatures through an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. In return, the increased flexibility leads to a decreased stability of psychrophilic enzymes. In order to gain further advances in the analysis of the activity/flexibility/stability concept, psychrophilic, mesophilic, and thermophilic DNA ligases have been compared by three-dimensional-modeling studies, as well as regards their activity, surface hydrophobicity, structural permeability, conformational stabilities, and irreversible thermal unfolding. These data show that the cold-adapted DNA ligase is characterized by an increased activity at low and moderate temperatures, an overall destabilization of the molecular edifice, especially at the active site, and a high conformational flexibility. The opposite trend is observed in the mesophilic and thermophilic counterparts, the latter being characterized by a reduced low temperature activity, high stability and reduced flexibility. These results strongly suggest a complex relationship between activity, flexibility and stability. In addition, they also indicate that in cold-adapted enzymes, the driving force for denaturation is a large entropy change.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Georlette, D.
Damien, B.
Blaise, Vinciane ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Depiereux, E.
Uversky, V. N.
Gerday, Charles ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Language :
English
Title :
Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases
Publication date :
26 September 2003
Journal title :
Journal of Biological Chemistry
ISSN :
0021-9258
eISSN :
1083-351X
Publisher :
Amer Soc Biochemistry Molecular Biology Inc, Bethesda, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Deming, J. W. (2002) Curr. Opin. Microbiol. 5, 301-309
Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., and Stetter, K. O. (1997) Extremophiles 1, 14-21
Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., Garsoux, G., Petrescu, I., and Feller, G. (1997) Biochim. Biophys. Acta 1342, 119-131
Russell, N. J. (1998) Adv. Biochem. Eng. Biotechnol. 61, 1-21
Demirjian, D. C., Moris-Varas, F., and Cassidy, C. S. (2001) Curr. Opin. Chem. Biol. 5, 144-151
Levy, M., and Miller, S. L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7933-7938
Wintrode, P. L., Miyazaki, K., and Arnold, F. H. (2000) J. Biol. Chem. 275, 31635-31640
Kumar, S., Tsai, C. J., and Nussinov, R. (2002) Biochemistry 41, 5359-5374
Smalas, A. O., Leiros, H. K., Os, V., and Willassen, N. P. (2000) Biotechnol. Annu. Rev. 6, 1-57
Cavicchioli, R., Siddiqui, K. S., Andrews, D., and Sowers, K. R. (2002) Curr. Opin. Biotechnol. 13, 253-261
D'Amico, S., Claverie, P., Collins, T., Georlette, D., Gratia, E., Hoyoux, A., Meuwis, M. A., Feller, G., and Gerday, C. (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 917-925
Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., and Arnold, F. H. (2000) J. Mol. Biol. 297, 1015-1026
Svingor, A., Kardos, J., Hajdu, I., Nemeth, A., and Zavodszky, P. (2001) J. Biol. Chem. 276, 28121-28125
Fields, P. A. (2001) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 417-431
Siddiqui, K. S., Cavicchioli, R., and Thomas, T. (2002) Extremophiles 6, 143-150
Ciardiello, M. A., Camardella, L., Carratore, V., and di Prisco, G. (2000) Biochim. Biophys. Acta 1543, 11-23
Collins, T., Meuwis, M. A., Gerday, C., and Feller, G. (2003) J. Mol. Biol. 328, 419-428
D'Amico, S., Gerday, C., and Feller, G. (2003) J. Biol. Chem. 278, 7891-7896
Georlette, D., Jonsson, Z. O., Van Petegem, F., Chessa, J.-P., Van Beeumen, J., Hubscher, U., and Gerday, C. (2000) Eur. J. Biochem. 267, 3502-3512
Sriskanda, V., Schwer, B., Ho, C. K., and Shuman, S. (1999) Nucleic Acids Res. 27, 3953-3963
Thorbjarnardóttir, S. H., Jónsson, Z. O., Andresson, O. S., Kristjánsson, J. K., Eggertsson, G., and Pálsdóttir, A. (1995) Gene (Amst.) 161, 1-6
Lee, J. Y., Chang, C., Song, H. K., Moon, J., Yang, J. K., Kim, H. K., Kwon, S. T., and Suh, S. W. (2000) EMBO J. 19, 1119-1129
Hernandez, G., Jenney, F. E., Jr., Adams, M. W., and LeMaster, D. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3166-3170
Timson, D. J., and Wigley, D. B. (1999) J. Mol. Biol. 285, 73-83
Pace, C. N. (1986) Methods Enzymol. 131, 266-280
Vanhove, M., Guillaume, G., Ledent, P., Richards, J. H., Pain, R. H., and Frere, J. M. (1997) Biochem. J. 321, 413-417
Lakowicz, J. (1983) Principles of Fluorescence Spectroscopy, pp. 257-301, Plenum Press, New York
Feller, G., d'Amico, D., and Gerday, C. (1999) Biochemistry 38, 4613-4619
Goldberg, M. E., Expert-Bezançon, N., Vuillard, L., and Rabilloud, T. (1995) Fold. Des. 1, 21-27
Matouschek, A., Matthews, J. M., Johnson, C. M., and Fersht, A. R. (1994) Protein Eng. 7, 1089-1095
Sanchez-Ruiz, J. M., Lopez-Lacomba, J. L., Cortijo, M., and Mateo, P. L. (1988) Biochemistry 27, 1648-1652
Lonhienne, T., Gerday, C., and Feller, G. (2000) Biochim. Biophys. Acta 1543, 1-10
Sriskanda, V., and Shuman, S. (2002) J. Biol. Chem. 277, 9695-9700
Stryer, L. (1965) J. Mol. Biol. 13, 482-495
Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F., and Gilmanshin, R. I. (1991) Biopolymers 31, 119-128
Kumar, S., and Nussinov, R. (2001) Proteins 43, 433-454
Chakravarty, S., and Varadarajan, R. (2002) Biochemistry 41, 8152-8161
Hochachka, P. W., and Somero, G. N. (1984) Biochemical Adaptations, pp. 355-449, Princeton University Press, Princeton
Fields, P. A., and Somero, G. N. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 11476-11481
Fitter, J., and Heberle, J. (2000) Biophys. J. 79, 1629-1936
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.