[en] Non-contact optical measurement methods are essential tools in many industrial and research domains. A family of new non-contact optical measurement methods based on the polarization states splitting technique and monochromatic light projection as a way to overcome ambient lighting for in-situ measurement has been developed. Recent works on a birefringent element, a Savart plate, allow to build a more flexible and robust interferometer. This interferometer is a multipurpose metrological device. On one hand the interferometer can be set in front of a CCD camera. This optical measurement system is called a shearography interferometer and allows to measure micro displacements between two states of the studied object under coherent lighting. On the other hand by producing and shifting multiple sinusoidal Young’s interference patterns with this interferometer, and using a CCD camera, it is possible to build a 3D structured light profilometer.
Disciplines :
Physics
Author, co-author :
Blain, Pascal ; Université de Liège - ULiège > Département de physique > Optique - Hololab
Michel, Fabrice
Piron, Pierre ; Université de Liège - ULiège > Département de physique > Optique - Hololab
Renotte, Yvon ; Université de Liège - ULiège > Département de physique > Optique - Hololab
Habraken, Serge ; Université de Liège - ULiège > Département de physique > Optique - Hololab
Language :
English
Title :
Combining shearography and interferometric fringe projection in a single device for complete control of industrial applications
Publication date :
09 August 2013
Journal title :
Optical Engineering
ISSN :
0091-3286
eISSN :
1560-2303
Publisher :
International Society of Optical Engineering, Bellingham, United States - Washington
Volume :
52
Issue :
8
Pages :
0841021-7
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
MINT
Funders :
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
V. Moreau et al., "Interferometric fringes projection system for 3D profilometry and relief investigation", Proc. SPIE 5857, 62-69 (2005).
V. Rosso et al., "An almost-common path interferometer using the separation of the polarization states for digital phase-shifting shearography", Opt. Eng. 46(10), 105601 (2007).
J. A. Leendertz and J. N. Butters, "An image-shearing speckle-pattern interferometer for measuring bending moments", J. Phys. E.: Sci. Instrum. 6(11), 1107-1110 (1973).
Y. Hung and C. Liang, "Image shearing camera for direct measurement of surface strains", Appl. Opt. 18(7), 1046-1050 (1979).
W. Steinchen and L. Yang, Digital Shearography: Theory and Application of Digital Speckle Pattern Interometry, p. 330, SPIE Press, Bellingham (2003).
D. Francis, R. P. Tatam, and R. M. Groves, "Shearography technology and applications: a review", Meas. Sci. Technol. 21(10), 2001-2029 (2010).
H. Shang et al., "Beam-splitting cube for fringe-projection, holographic, and shearographic interferometry", Appl. Opt. 40(31), 5615-5623 (2001).
D. Malacara, Optical Shop Testing, Chap. 16 and Chap. 4, Wiley Series in Pure and Applied Optics, Wiley, Hoboken, New Jersey (2007).
P. Blain et al., "Using a Savart plate in optical metrology", Proc. SPIE 7791, 779107 (2010).
F. Michel, Y. Renotte, and S. Habraken, "Measurement of the defect size by shearography or other interferometric techniques", Opt. Eng. 51(3), 033602 (2012).
H. M. Shang et al., "Estimating the depth and width of arbitrarilyoriented disbonds in laminates using shearography", J. Nondestr. Eval. 9(1), 19-26 (1990).
J. Zhong and Y. Zhang, "Absolute phase-measurement technique based on number theory in multifrequency grating projection profilometry", Appl. Opt. 40(4), 492-500 (2001)
W. Nadeborn, P. Andra, and W. Osten, "A robust procedure for absolute phase measurement", Opt. Lasers in Eng. 24(2-3), 245-260 (1996).
M. Born and E. Wolf, Principles of Optics, 7th Ed., pp. 830-831, Cambridge University Press, Cambridge (2003).
T. H. Peek, "Use of Savart plates in grating interferometers", Appl. Opt. 10(5), 1092-1096 (1971)
M. Françon and S. Mallick, "Polarization interferometers: applications in microscopy and macroscopy", Wiley Intersciences, Wiley Series in Pure and Applied Optics, p. 160, Wiley, London (1971).
C. Zhang et al., "A static polarization imaging spectrometer based on a Savart polariscope", Opt. Commun. 203(1), 21-26 (2002).
A. L. Weijers, H. Van Brug, and H. J. Frankena, "Polarization phase stepping with a Savart element", Appl. Opt. 37(22), 5150-5155 (1998).
K. Oka and N. Saito, "Snapshot complete imaging polarimeter using Savart plates", Proc. SPIE 6295, 629508 (2006).
N. Murakami and N. Baba, "Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection", Opt. Lett. 35(18), 3003-3005 (2010).
N. Murakami et al., "Development of the Savart-plate lateral-shearing interferometric nuller for exoplanet (SPLINE)", Proc. SPIE 8446, 84468H (2012).
F. Michel et al., "Nondestructive testing by digital shearography using a Savart plate", Proc. SPIE 7386, 73861O (2009).
M. Polyanskiy, http://refractiveindex.info/?group=CRYSTALS&material=CaCO3 (01 January 2013).
S. Equis and P. Jacquot, "Simulation of speckle complex amplitude: advocating the linear model", Proc. SPIE 6341, 634138 (2006).
J. W. Goodman, Statistical Optics, p. 550, John Wiley, New York (1985).
P. Slangen et al., "Computer-aided interferometric measurements of drift and phase shifter calibration for digital speckle pattern interferometry", Opt. Eng. 34(12), 3526-3530 (1995).
G. H. Kaufmann, "Phase measurement in temporal speckle pattern interferometry using the Fourier transform method with and without a temporal carrier", Opt. Commun. 217(1), 141-149 (2003).
M. Cherbuliez, P. Jacquot, and X. Colonna De Lega, "Wavelet processing of interferometric signals and fringe patterns", Proc. SPIE 3813, 692-702 (1999).