[en] The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1). Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR (ref. 5), TLF-2 enters trypanosomes independently of TbHpHbR (refs 4, 5). APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic beta-sheet of the T. b. gambiense-specific glycoprotein (TgsGP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Uzureau, Pierrick
Uzureau, Sophie
Lecordier, Laurence
Fontaine, Frederic
Tebabi, Patricia
Homble, Fabrice
Grelard, Axelle
Zhendre, Vanessa
Nolan, Derek P.
Lins, Laurence ; Université de Liège - ULiège > Chimie et bio-industries > Biophysique moléc. numér.
Crowet, Jean-Marc ; Université de Liège - ULiège > Chimie et bio-industries > Biophysique moléc. numér.
Simarro, P. P. et al. The Atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. Int. J. Health Geogr. 9, 57 (2010)
Pays, E. et al. The trypanolytic factor of human serum. Nature Rev. Microbiol. 4, 477-486 (2006)
Raper, J., Fung, R., Ghiso, J., Nussenzweig, V. & Tomlinson, S. Characterization of a novel trypanosomelytic factor fromhumanserum. Infect. Immun. 67, 1910-1916 (1999)
Vanhollebeke, B.& Pays, E. The trypanolytic factor of humanserum:many ways to enter the parasite, a single way to kill. Mol. Microbiol. 76, 806-814 (2010)
Vanhollebeke, B. et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320, 677-681 (2008)
Vanhamme, L. et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422, 83-87 (2003)
Pérez-Morga, D. et al. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309, 469-472 (2005)
Berberof, M., Pérez-Morga, D. & Pays, E. A receptor-like flagellar pocket glycoprotein specific to Trypanosoma brucei gambiense. Mol. Biochem. Parasitol. 113, 127-138 (2001)
Rougemont, A. et al. Hypohaptoglobinaemia as an epidemiological and clinical indicator for malaria. Results of two studies in a hyperendemic region in West Africa. Lancet 332, 709-712 (1988)
Raper, J., Nussenzweig, V. & Tomlinson, S. The main lytic factor of Trypanosoma brucei brucei in normal human serum is not high density lipoprotein. J. Exp. Med. 183, 1023-1029 (1996)
Gibson, W. Resolution of the species problem in African trypanosomes. Int. J. Parasitol. 37, 829-838 (2007)
Xong, H. V. et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95, 839-846 (1998)
Lecordier, L. et al. C-terminal mutants of apolipoprotein L-I efficiently kill both Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS Pathog. 5, e1000685 (2009)
Salmon, D. et al. A novel heterodimeric transferrin receptor encoded by a pair of VSG expression site-associated genes in Trypanosoma brucei. Cell 78, 75-86 (1994)
Radwanska, M. et al. Novel primer sequences for a polymerase chain reactionbased detection of Trypanosoma brucei gambiense. Am. J. Trop. Med. Hyg. 67, 289-295 (2002)
Felu, C., Pasture, J., Pays, E. & Pérez-Morga, D. Diagnosis potential of a conserved genomic rearrangement in the Trypanosoma brucei gambiense-specific TGSGP locus. Am. J. Trop. Med. Hyg. 76, 922-929 (2007)
Gibson, W., Nemetschke, L. & Ndung'u, J. Conserved sequence of the TgsGP gene in Group1Trypanosomabrucei gambiense. Infect. Genet. Evol. 10, 453-458(2010)
Bussler, H., Linder, M., Linder, D. & Reinwald, E. Determination of the disulfide bonds within a B domain variant surface glycoprotein from Trypanosoma congolense. J. Biol. Chem. 273, 32582-32586 (1998)
Blum, M. L. et al. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362, 603-609 (1993)
Callebaut, I. et al. Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell. Mol. Life Sci. 53, 621-645 (1997)
Overath, P. & Engstler, M. Endocytosis, membrane recycling and sorting of GPIanchored proteins: Trypanosoma brucei as a model system. Mol. Microbiol. 53, 735-744 (2004)
Jean-Francois, F. et al. Aggregation of cateslytin b-sheets on negatively charged lipids promotes rigid membrane domains. A newmode of action for antimicrobial peptides? Biochemistry 47, 6394-6402 (2008)
O'Brien, T. C. et al. A parasite cysteine protease is key to host protein degradation and iron acquisition. J. Biol. Chem. 283, 28934-28943 (2008)
Kieft, R. et al.Mechanismof Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc. Natl Acad. Sci. USA 107, 16137-16141
Higgins, M. K. et al. Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl Acad. Sci. USA 110, 1905-1910 (2013)
DeJesus, E., Kieft, R., Albright, B., Stephens, N. A. & Hajduk, S. L. A single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding. PLoS Pathog. 9, e1003317 (2013)
Symula, R. E. et al. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance. PLoS Negl. Trop. Dis. 6, e1728 (2012)
Genovese,G. et al. Association of trypanolytic apoL1variants with kidney disease in African-Americans. Science 329, 841-845 (2010)
Douliez, J. P., Bellocq, A. M. & Dufourc, E. J. Effect of vesicle size, polydispersity and multilayering on solid-state P-31-and H-2-NMR spectra. J. Chim. Phys. 91, 874-880 (1994)
Harrington, J. M. et al. Novel african trypanocidal agents: membrane rigidifying peptides. PLoS ONE 7, e44384 (2012)
Santos, C. C., Coombs, G. H., Lima, A. P. & Mottram, J. C. Role of the Trypanosoma brucei natural cysteine peptidase inhibitor ICPin differentiation and virulence.Mol. Microbiol. 66, 991-1002 (2007)
Baltz, T., Baltz, D., Giroud, C.& Crockett, J. Cultivation in a semi-definedmediumof animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 4, 1273-1277 (1985)
Burkard, G., Fragoso, C. M. & Roditi, I. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 153, 220-223 (2007)
Glover, L., Alsford, S., Beattie, C. & Horn, D. Deletion of a trypanosome telomere leads to loss of silencing andprogressive loss of terminalDNAin the absence of cell cycle arrest. Nucl. Acids Res. 35, 872-880 (2007)
Lecordier, L. et al.Characterization of a TFIIHhomologue fromTrypanosoma brucei. Mol. Microbiol. 64, 1164-1181 (2007)
Sommers, J., Peterson, G., Keller, G. A., Parsons, M. & Wang, C. C. The C-terminal tripeptide of glycosomal phosphoglycerate kinase is both necessary and sufficient for import into the glycosomes of Trypanosoma brucei. FEBS Lett. 316, 53-58 (1993)
Devaux, S. et al. Diversification of function by different isoforms of conventionally shared RNA polymerase subunits. Mol. Biol. Cell 18, 1293-1301 (2007)
Wirtz, E., Leal, S., Ochatt, C. & Cross, G. A. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89-101 (1999)
Ruepp, S. et al. Survival of Trypanosoma brucei in the tsetse fly is enhanced by the expression of specific forms of procyclin. J. Cell Biol. 137, 1369-1379 (1997)
Salmon, D. et al. Cytokinesis of Trypanosomabrucei bloodstreamformsdepends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol. Microbiol. 84, 225-242 (2012)
Pedersen, J. S. A flux-and background-optimized version of the NanoSTAR smallangle X-ray scattering camera for solution scattering. J. Appl. Cryst. 37, 369-380 (2004)
Vanhollebeke, B.,Uzureau, P.,Monteyne, D., Pérez-Morga, D.&Pays, E. Cellularand molecular remodelling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. Euk. Cell 9, 1272-1282 (2010)
Goormaghtigh, E., Cabiaux, V. & Ruysschaert, J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell. Biochem. 23, 405-450 (1994)
Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipids fromanimal tissues. J. Biol. Chem. 226, 497-509 (1957)
Sani, M. A., Castano, S., Dufourc, E. J. & Gröbner, G. Restriction of lipid motion in membranes triggered by b-sheet aggregation of the anti-apoptotic BH4 domain. FEBS J. 275, 561-572 (2008)
Nolan, D. P. & Voorheis, H. P. Hydrogen ion gradients across the mitochondrial, endosomal and plasmamembranes in bloodstreamformsof Trypanosoma brucei. Eur. J. Biochem. 267, 4601-4614 (2000)
Klose, A., Zigrino, P., Dennhö fer, R., Mauch, C. & Hunzelmann, N. Identification and discrimination of extracellularly active cathepsins B and L in high-invasive melanoma cells. Anal. Biochem. 353, 57-62 (2006).